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Abstract
Computational modeling of single-cell gene expression is crucial for understanding cellular pro-
cesses, but generating realistic expression profiles remains a major challenge. This difficulty arises
from the count nature of gene expression data and complex latent dependencies among genes.
Existing generative models often impose artificial gene orderings or rely on shallow neural network
architectures. We introduce a scalable latent diffusion model for single-cell gene expression data,
which we refer to as scLDM, that respects the fundamental exchangeability property of the data.
Our VAE uses fixed-size latent variables leveraging a unified Multi-head Cross-Attention Block
(MCAB) architecture, which serves dual roles: permutation-invariant pooling in the encoder and
permutation-equivariant unpooling in the decoder. We enhance this framework by replacing the
Gaussian prior with a latent diffusion model using Diffusion Transformers and linear interpolants,
enabling high-quality generation with multi-conditional classifier-free guidance. We show its supe-
rior performance in a variety of experiments for both observational and perturbational single-cell
data, as well as downstream tasks like cell-level classification.

1 Introduction

Single-cell transcriptomics has revolutionized our understanding of cellular heterogeneity and biological
processes at unprecedented resolution [1], enabling high-throughput gene expression profiling across
millions of cells [2], and providing insights into cellular differentiation [3], disease progression [4], responses
to drug perturbations [5–7]. However, modeling the complex, high-dimensional gene expression data from
single cells presents significant computational and methodological challenges [8–10].

Deep generative modeling [11] offers a powerful framework to formulate expressive probability distribu-
tions. In the context of single-cell data, multiple methods have been proposed. In particular, Variational
Auto-Encoders (VAEs) have been extensively utilized for representation learning (single-cell Variational
Inference; scVI) [12], perturbation modeling [13, 14], trajectory inference [15], among others [16]. Addi-
tionally, Generative Adversarial Networks (GANs) have also been proposed, both for generating realistic
cell populations (scGAN; [17]) and for inferring cellular trajectories [18]. Recently, diffusion-based models
have also been adopted for single-cell gene expression [19]. An interesting research line was proposed in
[20] that combines scVI with a flow matching model in the latent space (CFGen).

However, two key challenges limit existing methods. First, they often require a fixed ordering of genes or
operate on a restricted subset of highly variable genes (HGVs). This assumption directly clashes with the
biological reality that gene expression profiles are exchangeable sets, where the order of genes carries no
meaning. Second, approaches based on GANs inherit well-known training instabilities and risks of mode
collapse. These limitations make current models inflexible, difficult to scale, and unable to properly handle
the unordered nature of single-cell data.
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Figure 1. Our deep generative model, scLDM, for single-cell gene expression data. A: A fully
transformer-based architecture for processing gene expressions. The encoder network results
in permutation-invariant latent variables represented as tokens. The decoder network returns
permutation-equivariant counts for given gene IDs. B: At the second stage, a vanilla prior is replaced
by a latent diffusion model. We model latent tokens using Diffusion Transformers (DiT), and train
the resulting LDM using linear interpolants and the flow matching loss. Sampling is carried out by
applying the Scalable Interpolant Transformers (SiT) library [21].

This paper introduces a novel approach that combines the flexibility of VAEs with the power of latent
diffusion models (see Figure 1), specifically designed to handle the exchangeable nature of gene expression
data. The key insight is that careful architectural choices, particularly in the parameterization of permutation-
invariant and permutation-equivariant components, result in a scalable, deep, and exchangeable generative
model. The contributions of the paper are the following:

∙ We propose a novel fully transformer-based VAE architecture for exchangeable data that uses a
single set of fixed-size, permutation-invariant latent variables. The model introduces a Multi-head
Cross-Attention Block (MCAB) that serves dual purposes: It acts as a permutation-invariant pooling
operator in the encoder, and functions as a permutation-equivariant unpooling operator in the
decoder. This unified approach eliminates the need for separate architectural components for
handling varying set sizes.

∙ We replace the standard Gaussian prior with a latent diffusionmodel trained with the flowmatching
loss and linear interpolants using the Scalable Interpolant Transformers formulation (SiT) [21], and
a denoiser parameterized by Diffusion Transformers (DiT) [22]. This allows for better modeling of
the complex distribution of cellular states and enables controlled generation through classifier-free
guidance.

∙ The proposed framework, which we refer to as scLDM, supports generation conditioned on multi-
ple attributes simultaneously through an extended classifier-free guidance mechanism, enabling
fine-grained control over generated cell states, as demonstrated on multiple benchmark datasets.
Moreover, we indicate the strengths of our fully transformer-based auto-encoder in terms of recon-
struction metrics and on a downstream prediction task.

2 Background

Variational Auto-Encoders Another approach is Variational Auto-Encoders [23, 24], which offer flexible
modeling capabilities. [25] proposed SetVAE with two latent variables for varying set sizes: 𝐳ℐ matching
𝐱ℐ ’s dimensionality (where 𝐳𝑖 corresponds to 𝐱𝑖 , 𝑖 ∈ ℐ) and constant-size 𝐜 ∈ ℝ𝑑1 . They used hierarchical
VAE with multiple 𝐳ℐ and 𝐜 layers and replaced conditional likelihood with Chamfer Distance. While we
appreciate VAE’s flexibility, we find two distinct latents and hierarchical structure unnecessary, arguing
that careful parameterization is crucial for high performance.
Permutation-equivariant/invariant Parameterizations Geometric deep neural networks typically

compose permutation-invariant and/or permutation-equivariant layers with nonlinearity activations [26].
DeepSets [27] exemplifies this blueprint by processing elements consistently regardless of position, then
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applying symmetric aggregation (averaging or pooling [28–30]) to ensure permutation invariance. How-
ever, processing elements separately before aggregation with non-learnable pooling is limiting. Learned
attention mechanisms in transformer architectures offer a solution, enabling joint element transformation.
SetTransformer [31] introduces multi-head attention blocks and Pooling by Multi-head Attention for per-
mutation invariance. We propose an alternative parameterization using a single multi-head attention layer
for fixed-size output, followed by transformer blocks.
Latent Diffusion Models Latent Diffusion Models (LDMs) perform diffusion processes in learned

latent spaces rather than directly in high-dimensional data spaces. Stable Diffusion [32] pioneered this
approach for text-to-image synthesis by training diffusion models in the latent space of a pre-trained
VAE, dramatically reducing computational costs while maintaining generation quality. This paradigm has
proven effective across diverse scientific domains: all-atom diffusion transformers [33] generate molecules
and materials with atomic-level precision, similarly LaM-SLidE [34] utilizes transformer-based LDM for
molecular dynamics (among others), while La-proteina [35] employs transformer-based partially latent flow
matching for atomistic protein generation. These advances demonstrate the versatility of latent diffusion
approaches for complex, high-dimensional scientific data across multiple modalities. Here, we extend this
framework to single-cell transcriptomics by proposing a transformer-based LDM for this biological data
type.

GenerativeModels for scRNA-seq In the context of single-cell genomics, numerous generative models
have been developed for (conditional) sampling of gene expression profiles. scVI [12] represents an early
VAE-based generative model, while more recent approaches include GAN-based and diffusion-based
architectures such as scGAN [36] and scDiffusion [19]. These models operate in continuous space and
therefore transform discrete gene expression data into log-normalized counts. Recently, latent diffusion
frameworks have emerged with models like SCLD [37] and CFGen [20], which leverage latent diffusion
frameworks. Additionally, application-specific generative models have been developed for perturbational
single-cell genomics, including CPA [38], SquiDiff [39], CellFlow [40], and CellOT [41], which are tailored
to capture the effects of genetic and chemical perturbations on cellular states. Our approach is similar in
vein to CFGen and SCLD, but leverages transformer-based architectures for both our newly proposed VAE
as well as the latent diffusion model.

3 Methodology

3.1 Problem formulation

Let us consider𝑀 random variables, 𝐱, where each 𝐱𝑖 ∈ 𝕏𝐷 , e.g., 𝕏 = ℕ. A set of indices of𝑀 random
variables is denoted as ℐ, namely, ℐ = 𝜋({1, 2, … ,𝑀}), where 𝜋(⋅) is a permutation1. Further, we denote a
specific order of variables in 𝐱 determined by ℐ as 𝐱ℐ . We assume that for a given ℐ, an object 𝐱ℐ is equivalent
to an object defined by 𝜋(ℐ), namely, 𝐱ℐ = 𝐱𝜋(ℐ). An example of such a setting is gene expression data
where {1, 2, … ,𝑀} corresponds to gene IDs and the order of gene IDs does not change the state of a cell.
Further, we assume a true conditional distribution model 𝑝(𝐱ℐ|ℐ) that for a given order of indices ℐ allows
sampling 𝐱ℐ . We access this true distribution through observed iid data𝒟 = {(𝐱ℐ𝑛 , ℐ𝑛)}

𝑁
𝑛=1. We look for a

model 𝑝(𝐱ℐ|𝜃, ℐ) with parameters 𝜃 that optimizes the log-likehood function for the empirical distribution
with data𝒟, 𝓁(𝜃;𝒟) =

∑𝑁
𝑛=1 ln 𝑝(𝐱ℐ𝑛 |𝜃, ℐ𝑛). Moreover, we are interested in finding a single model that for

given indices ℐ generates corresponding 𝐱ℐ . Formally, we require the model to be exchangeable, namely,
𝑝(𝐱ℐ|ℐ) = 𝑝(𝐱𝜋(ℐ)|𝜋(ℐ)). For instance, amodel generates the same gene expression profile for given different
orders of gene IDs.
To model an exchangeable probabilistic model 𝑝(𝐱ℐ|𝜃, ℐ), we introduce 𝑚 latent variables (i.e., the

number of latents is fixed for all subsets ℐ), 𝐙 ∈ ℝ𝑚×𝐷 . By using the family of variational posteriors of the
form 𝑞(𝐙|𝜙, 𝐱ℐ), the Evidence Lower BOund (ELBO) is the following:

ln 𝑝(𝐱ℐ|𝜃, ℐ) ≥ 𝔼𝐙∼𝑞(𝐙|𝜙,𝐱ℐ ) [ln 𝑝(𝐱ℐ|𝜂, 𝐙, ℐ) + ln 𝑝(𝐙|𝜓) − ln 𝑞(𝐙|𝜙, 𝐱ℐ)] , (1)

1We denote a permutation either as a function 𝜋(⋅) or, equivalently, as a matrix 𝐏.
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where 𝜃 = {𝜂, 𝜓, 𝜙} are the parameters of the model. We propose to model these parameters using neural
networks, namely: 𝜙(𝐱ℐ) = NN𝑒𝑛𝑐(𝐱ℐ), 𝜂(𝐙, ℐ) = NN𝑑𝑒𝑐(𝐙, ℐ), and 𝜓 are weights of a parameterization of
the prior. Since our assumption is that the model must be exchangable, we propose to parameterize the
distributions in a way that: (i) 𝐙 is permutation-invariant, namely, we aim for defining variational posteriors
as Gaussian distributions with permutation-invariant neural networksNN𝑒𝑛𝑐, (ii) the conditional likelihood
is defined as 𝑝(𝐱ℐ|𝜂(𝐙, ℐ)) =

∏
𝑖∈𝐼 𝑝(𝐱𝑖|𝜂𝑖(𝐙, ℐ)), hence, we must ensure that: 𝐏𝜂(𝐙, 𝜋(ℐ)) = NN(𝐙, 𝜋(ℐ)).

3.2 scLDM: A Transformer-based VAE with Latent Diffusion

Permutation-invariant/equivariant Cross-Attention Our VAE is parameterized by a novel transformer-
based architecture that leverages multi-head cross-attention block (MCAB), enabling pooling/unpooling
operations to avoid processing tens of thousands of tokens at the same time:

MCAB𝐒(𝐗) = 𝐹(𝐗, 𝐒) + MLP(LN𝐹(𝐹(𝐗, 𝐒)) (2)

𝐹(𝐗, 𝐒) = 𝐐 + Att𝐾
(
LN𝑄(𝐐),𝐊,𝐕)

)
(3)

𝐐 = Linear𝑆(𝐒), 𝐊 = Linear𝐾(LN𝐾(𝐗)), 𝐕 = Linear𝑉(LN𝑉(𝐗)), (4)

where Linear is a linear layer, LN(⋅) denotes a layer norm, andMLP(⋅) is a small fully-connected neural
network, e.g.,MLP(𝐗) = (Linear◦(Linear ⊙ (silu◦Linear))(𝐗).2 𝐒 are learnable pseudoinputs. MCAB𝐒 is
defined similarly to a block used in Perceiver [42, 43].
MCAB is either permutation-invariant or permutation-equivariant. Since it relies on the attention

mechanism, if we permute 𝐗 but do not permute 𝐒, thenMCAB is permutation-invariant (see Property 3
for the proof). However, if we process 𝐙 by a permutation-invariant function and we permute 𝐒 accordingly
to the permuted indices, then MCAB becomes permutation-equivariant (see Property 4 for the proof).
As a result, we useMCAB as a permutation-invariant pooling operator in the encoder network, and as a
permutation-equivariant unpooling operator in the decoder network.

Encoder (VariationalPosterior)Wedefine the family of variational posteriors asGaussians, 𝑞(𝐙|𝜙(𝐱ℐ)) =

𝒩(𝐙|𝜇(𝐱ℐ), 𝜎(𝐱ℐ)), 𝜙(𝐱ℐ)
𝑑𝑓
= {𝜇(𝐱ℐ), 𝜎2(𝐱ℐ)}. We need 𝐙 to be of fixed size and invariant to permutations of

𝐱ℐ , we propose the following architecture of the encoder network:

NN𝑒𝑛𝑐(𝐱ℐ , ℐ) = (T𝐿◦T𝐿−1◦…◦T1◦MSCAB𝐒◦Embedding) (𝐱ℐ , ℐ), (5)

where T𝑙(⋅) denotes a transformer block, e.g., T𝑙(𝐗) = ((Id ⊕ (MLP◦LN2))◦(Id ⊕ (Att𝐾◦LN1)))(𝐗), and
Embedding(⋅, ⋅) is an embedding layer. Since inputs 𝐱ℐ form a (column) vector of counts, and ℐ are IDs, we
propose to use the following embedding layer:

Embedding(𝐱ℐ , ℐ) = Linear◦(repeat𝐷(𝐱ℐ) ⊞ 𝐄ℐ), (6)

where repeat𝐷 repeats the counts 𝐷-times resulting in a matrix𝑀 × 𝐷, Linear projects the concatenated
2𝐷-dimensional space to the 𝐷-dimensional space, and 𝐄 ∈ ℝ𝑀×𝐷 is the embedding matrix. The rationale
behind this way of embedding both counts and indices is to mix the information and be able to learn the
mixing through a projection layer. Additionally, we propose to encode only expressed genes, and replace
non-expressed genes with a PAD token. We provide more details and an example in Appendix F.1.
The last transformer block duplicates the embedding dimension such that both the means 𝜇 and the

variances 𝜎2 of a Gaussian are modeled. Alternatively, we can output means only to have an auto-encoder
architecture, which is typically used in Latent Diffusion Models [32]. Note that all transformer blocks are
permutation-equivariant, but ourMCAB𝐒 is permutation-invariant. As a result, the proposed parameteriza-
tion NN𝑒𝑛𝑐 results in permutation-invariant variational posteriors.
Decoder (Conditional Likelihood) The decoder network parameterizes the conditional likelihood

function 𝑝(𝐱ℐ|𝜂(𝐙, ℐ)) for given latents 𝐙 and indices ℐ. The conditional likelihood could be a Gaussian
if 𝐱’s are continuous, or Poisson or Negative Binomial for counts. To fulfill the requirement on modeling

2We use the following notation for function compositions: (𝑓◦𝑔)(𝑥)
𝑑𝑓
= 𝑓(𝑔(𝑥)), (𝑓 ⋅ 𝑔)(𝑥)

𝑑𝑓
= 𝑓(𝑥)𝑔(𝑥), (𝑓 ⊕ 𝑔)(𝑥)

𝑑𝑓
= 𝑓(𝑥) + 𝑔(𝑥),

and (𝑓 ⊞ 𝑔)(𝑥)
𝑑𝑓
= concatenate(𝑓(𝑥), 𝑔(𝑥)).
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exchangeable distributions, we need to ensure the conditional likelihood is exchangeable. In other words,
for a given permutation 𝜋, the following holds true: 𝑝(𝐱ℐ|𝜂(𝐙, ℐ)) = 𝑝(𝐱𝜋(ℐ)|𝜂(𝐙, 𝜋(ℐ))). First, we assume
that for given 𝐙, the conditional likelihood is fully factorized: 𝑝(𝐱ℐ|𝜂(𝐙, ℐ)) =

∏
𝑖∈𝐼 𝑝(𝐱𝑖|𝜂𝑖(𝐙, ℐ)). Next,

we make the parameterization of 𝑝(𝐱ℐ|𝜂(𝐙, ℐ)) permutation equivariant, because, otherwise, transforming
𝐙 would result in incorrect parameters for each component 𝑝(𝐱𝑖|𝜂𝑖(𝐙, ℐ)). Keeping in mind that 𝐙 is
permutation-invariant to permutations of 𝐱ℐ , we propose the following decoder network:

NN𝑑𝑒𝑐(𝐙, ℐ) = (MCAB𝐄ℐ◦T𝐿◦…◦T1)(𝐙, ℐ), (7)

and then use the outcomes of NN𝑑𝑒𝑐(𝐙, ℐ) to parameterize an appropriate distribution, e.g., the Negative
Binomial (see Appendix F.2 for further details).

In our decoder network, we useMCAB𝐄ℐ as our final block that outputs the parameters of the conditional
likelihood. To make sure the model is permutation-equivariant, we define pseudoinputs in the multi-head
cross-attention block selecting embedding vectors specified by ℐ, 𝐒 = 𝐄ℐ , where 𝐄 is the embedding used in
the encoder network. This way, we ensure permutation-equivariance since permuting indices is equivalent
to permuting embedding vectors, 𝐄𝜋(ℐ) = 𝐄ℐ , see Property 4 in Appendix. Eventually, we obtain a family of
exchangeable conditional likelihood functions.

Prior (Marginal over Latents) The final component of the proposed VAE is the prior of latent variables.
Formulating permutation-equivariant priors is challenging [44]; fortunately, our latents 𝐙 are permutation-
invariant and length-invariant. As a result, we can use any prior distribution we prefer, including standard
Gaussian, 𝑝(𝐙) = 𝒩(𝐙|𝟎, 𝐈).
In this paper, we advocate to use a Latent Diffusion Model (LDM) [32], namely, for a pre-trained VAE,

we fit a diffusion-based model in the latent space to replace a simpler prior like𝒩(𝐙|𝟎, 𝐈). Using LDMs not
only results in a better match with the aggregated posterior [11, 45], but allows the application of controlled
sampling using techniques such as classifier-free guidance [46]. In particular, we focus on linear interpolants
and the flow matching (FM) loss [47, 48], and the following version of the classifier-free guidance for FM:

𝑣𝑡,𝜖(𝐙, 𝑦) = 𝑣𝑡,𝜖(𝐙;Null) + 𝜔
[
𝑣𝑡,𝜖(𝐙; 𝑦) − 𝑣𝑡,𝜖(𝐙;Null)

]
, (8)

where 𝑣𝑡,𝜖(𝐙; ⋅) is a parameterized vector field, and𝜔 is the guidance strenght for attributes 𝐲 ∈ {0, 1}𝐽 , where
any combination of attributes is possible (we refer to it as joint conditioning); the Null attribute corresponds
to no conditioning. In CFGen [20], a different classifier-free guidance was used, namely, 𝑣𝑡,𝜖(𝐙, 𝑦) =
𝑣𝑡,𝜖(𝐙;Null) +

∑𝐽
𝑗=1 𝜔𝑗

[
𝑣𝑡,𝜖(𝐙; 𝑦𝑗) − 𝑣𝑡,𝜖(𝐙;Null)

]
, that assumes additive conditioning s.t.

∑
𝑗 𝑦𝑗 = 1.

We parameterize the vector field (score) model using Diffusion Transformer (DiT) blocks [22]. The
network is a composition of DiT and perfectly fits our modeling scenario since latents 𝐙 are tokens.

3.3 Training & Sampling

Training We train our model (scLDM) using the two-stage approach: (1) A VAE is trained to learn a
permutation-invariant latent space by reconstructing subsets of variables; and (2) An LDM is trained to
generate new samples from this latent space which can be controlled by classifier-free guidance [46] with
multiple conditions [20].

Stage 1: VAEWe train our VAE with a standard Gaussian prior by optimizing the ELBO in (1). However,
to encourage better reconstruction capabilities, we introduce 𝛽-weighting of the KL-term like in [49]. In the
most extreme case, we set 𝛽 to 0 and the encoder returns means only, 𝜇(𝐱ℐ).
Stage 2: LDM In the second stage, we freeze the VAE and replace the standard Gaussian prior with a

score-based (diffusion) model parameterized by a DiT network trained with linear interpolants and the flow
matching loss. Additionally, to encourage controlled sampling, for each element of a mini-batch, we sample
from the Bernoulli distribution with probability 𝜌 to determine whether conditioning is used or not.

Sampling In our model, sampling 𝐱’s determined by the indices ℐ is defined by the following generative
process: (i) 𝐙 ∼ 𝑝(𝐙), (ii) 𝐱ℐ ∼ 𝑝(𝐱ℐ|𝜂(𝐙, ℐ)). We can also sample conditionally by applying the classifier-free
guided sampling technique, following the vector field defined in (39).
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4 Experiments

Settings We provide more details on the experiments in the Appendix, namely, the datasets in Appendix
G, the baselines in Appendix H, the hyperparams of our scLDM in Appendix I, the evaluation pipeline with
metrics in Appendix J, and additional results in Appendix L. In the following experiments, we present supe-
rior capabilities of our scLDM: (i) the powerful reconstructive performance of the fully transformer-based
VAE, (ii) the unconditional and conditional generative performance on observational and perturbational
datasets, (iii) the usefulness of the embeddings provided by our auto-encoder on classification downstream
tasks.

4.1 (Un)conditional Cell Generation on Observational Data

Details For the first experiment, we used single-cell RNA-sequencing data from the benchmark datasets
used in [20]. Here, we are interested in evaluating the reconstructive and generative capabilities of our
scLDM. For generations, we train our scLDM to synthesize gene expression profiles conditioned on a single
attribute. At inference time, we query the model with specific labels to generate new synthetic cells that
match the desired cellular identity. In the case of unconditional generation, we sample from the vector
field without conditioning on the cell type label (i.e., 𝑦 = Null). We compare our approach to scVI [12],
scDiffusion [19], and the current SOTA generative model CFGen [20].

Table 1. Model performance comparison on cell reconstruction task.

Dataset Model RE ↓ PCC ↑ MSE ↓

Dentate Gyrus
scVI 𝟓𝟏𝟗𝟑.𝟐 ± 0.1 0.058 ± 0.000 0.378 ± 0.000
CFGen 5468.8 ± N∕A 0.076 ± N∕A 0.253 ± N∕A
scLDM 𝟓𝟐𝟑𝟐.𝟗 ± 43.1 𝟎.𝟏𝟎𝟑 ± 0.005 𝟎.𝟐𝟒𝟗 ± 0.002

Tabula Muris
scVI 5588.2 ± 1.7 0.221 ± 0.000 0.132 ± 0.000
CFGen 5547.6 ± N∕A 0.136 ± N∕A 0.127 ± N∕A
scLDM 𝟒𝟓𝟔𝟗.𝟔 ± 105.1 𝟎.𝟑𝟗𝟏 ± 0.021 𝟎.𝟎𝟗𝟐 ± 0.004

HLCA
scVI 5659.2 ± 0.5 0.125 ± 0.000 0.238 ± 0.000
CFGen 5428.7 ± N∕A 0.146 ± N∕A 0.117 ± N∕A
scLDM 𝟒𝟏𝟎𝟐.𝟏 ± 41.1 𝟎.𝟒𝟐𝟏 ± 0.013 𝟎.𝟎𝟔𝟗 ± 0.001

Results and discussion Our proposed scLDM model demonstrates substantial improvements over
existing approaches across all evaluated datasets and metrics, see Table 1. scLDM consistently achieves
the lowest reconstruction error values, with particularly notable improvements on Tabula Muris (4569.6 vs.
5547.6 for CFGen) and HLCA (4102.1 vs. 5428.7 for CFGen) datasets. The Pearson correlation coefficients
show dramatic improvements, with scLDM achieving 0.391 on Tabula Muris compared to 0.221 for scVI and
0.136 for CFGen, nearly doubling the correlation with ground truth. Similarly, MSE is consistently reduced,
with scLDM achieving 0.069 on HLCA compared to 0.117 for CFGen and 0.238 for scVI. These results
suggest that our fully transformer-based VAE is able to more effectively capture the complex structure of
single-cell gene expression data compared to traditional VAE-based methods (scVI, CFGen). The consistent
improvements across diverse tissue types (brain, entire organism, and lung) indicate the generalizability of
our approach, namely, a parameterization of the VAE using the proposed transformer-based architectures.
Table 2 presents the generation benchmarks, where scLDM demonstrates superior performance across

both unconditional and conditional generation sampling. In the unconditional setting, our model achieves
the lowest Wasserstein-2 distance across all datasets, with improvements ranging from 14% on Dentate
Gyrus to 12% on Tabula Muris. While CFGen shows competitive performance on MMD2 RBF, our approach
matches or outperforms it, achieving identical scores on HLCA and superior results on Tabula Muris. In
terms of the Fréchet Distance (FD), scLDM still shows superior performance, with particularly striking
improvements on Tabula Muris, where it achieves a nearly three-fold reduction compared to the second-best
baseline. For conditional generation, scLDMmaintains its performance edge with consistent improvements
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Table 2. Model performance comparison on (un)conditional cell generation benchmarks on highly
variable genes.

Setting Model W2 ↓ MMD2 RBF ↓ FD ↓
Dentate Gyrus

Uncond
scDiffusion 17.443 ± 0.028 0.258 ± 0.002 256.630 ± 0.357
CFGen 12.617 ± 0.034 0.022 ± 0.001 28.105 ± 0.332
scLDM 10.817 ± 0.065 0.023 ± 0.000 28.403 ± 0.099

Cond
scDiffusion 17.321 ± 0.041 0.689 ± 0.000 261.217 ± 1.856
CFGen 11.608 ± 0.066 0.075 ± 0.000 41.425 ± 1.612
scLDM 10.615 ± 0.028 0.102 ± 0.003 34.388 ± 1.014

Tabula Muris

Uncond
scDiffusion 14.143 ± 0.007 0.144 ± 0.001 158.977 ± 1.070
CFGen 11.658 ± 0.127 0.008 ± 0.000 36.373 ± 1.165
scLDM 10.295 ± 0.110 0.004 ± 0.000 13.130 ± 0.318

Cond
scDiffusion 14.143 ± 0.007 0.144 ± 0.001 158.977 ± 1.070
CFGen 8.921 ± 0.034 0.026 ± 0.000 21.517 ± 0.596
scLDM 7.717 ± 0.030 0.016 ± 0.000 11.008 ± 0.716

HLCA

Uncond
scDiffusion 15.886 ± 0.038 0.163 ± 0.001 210.853 ± 1.165
CFGen 12.433 ± 0.045 0.007 ± 0.000 24.639 ± 0.738
scLDM 10.419 ± 0.079 0.007 ± 0.000 18.024 ± 0.372

Cond
scDiffusion 15.886 ± 0.038 0.163 ± 0.001 210.853 ± 1.165
CFGen 9.757 ± 0.078 0.090 ± 0.006 33.900 ± 5.116
scLDM 8.445 ± 0.045 0.074 ± 0.002 20.974 ± 1.504

in W2, MMD2 RBF, and FD scores across all datasets. We report further generation results on all genes
in Appendix. In Figure 2 we report qualitative evaluations of generation results for the HLCA datasets
for all three models. Our model shows qualitatively a better coverage of the cell state variation on UMAP
coordinates, showcasing how it is able to recapitulate high resolution cell states in highly heterogenous
tissues like the human lung. Additionally, in Appendinx L.2 we provide an interpretability analysis on
the cross-attention scores of the encoder-decoder model of scLDM, showing how the latent tokens map
to specific marker gene set patterns. These results demonstrate that our latent diffusion approach not
only generates more realistic single-cell expression profiles but also maintains superior performance when
conditioning on cell state information, a crucial capability for practical applications in single-cell genomics.

4.2 Conditional Cell Generation on Perturbational Data

Details In the second experiment, we train our model for conditional gene expression generation based on
multiple attributes: a cell context (cell lines and cell types) and a perturbation type (gene knockouts and
cytokines). The VAE baseline is trained without attribute conditioning, focusing solely on the reconstruction
objective, while the flow matching component incorporates multi-attribute conditioning. By training across
diverse contexts, themodel learns to capture joint structure spanning different axes of variation. At inference
time, the flowmatchingmodel is queried with specific combinations of cell type and perturbation to generate
new gene expression profiles.

We leverage two datasets: (1) Parse 1M, containing perturbational single-cell RNA-sequencing data from
human peripheral blood mononuclear cells (PBMCs) generated by Parse Biosciences [50] with 1,267,690
single cells across 18 annotated cell types, each subjected to one of 90 cytokine perturbations or a control
condition, and to test generalization capabilities, we hold out 27 cytokine perturbations in CD4 Naive cells;
and (2) Replogle, a benchmark genetic perturbation dataset [51] consisting of 2,024 gene knockouts across
four cell lines after filtering perturbations with low on-target efficacy Adduri et al. [5], holding out 372
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(a) scLDM - conditional (b) CFGen - conditional (c) scdiffusion - conditional

(d) ACTA2 (e) COL1A1 (f) CFD

Figure 2. Conditional generation for the HLCA dataset for: (a) scLDM, (b) CFGen and (c) scd-
iffusion. Expression levels for 3 marker genes: (d) ACTA2, (e) COL1A1 and (f) CFD, markers of
“alveolar type 2 fibroblast cell”, corresponding to cell populations in the insets.

Table 3. Model performance comparison on conditional cell generation on Parse1M and Replogle.
For scLDM, we evaluated the generation performance across 3 different guidance weights (𝜔)

Dataset Model W2 ↓ MMD2 RBF ↓ FD ↓

Parse 1M

scVI 35.508 ± 0.182 1.372 ± 0.016 1233.109 ± 12.694
CPA 13.534 ± 0.036 1.117 ± 0.014 181.324 ± 0.985
scGPT 22.870 ± 0.152 2.203 ± 0.013 523.932 ± 7.043
STATE 19.111 ± 0.136 0.714 ± 0.009 312.344 ± 5.743
scLDM (𝜔=1) 12.457 ± 0.045 0.027 ± 0.002 18.136 ± 0.903
scLDM (𝜔=5) 12.902 ± 0.087 0.071 ± 0.004 43.363 ± 2.246
scLDM (𝜔=10) 13.638 ± 0.111 0.122 ± 0.006 69.769 ± 3.363

Replogle

scVI 17.359 ± 0.051 0.453 ± 0.003 284.474 ± 1.825
CPA 11.510 ± 0.029 0.532 ± 0.003 126.805 ± 0.693
scGPT 34.166 ± 0.272 3.087 ± 0.010 1247.679 ± 20.245
STATE 20.58 ± 0.039 0.730 ± 0.003 366.642 ± 1.547
scLDM (𝜔=1) 11.292 ± 0.033 0.200 ± 0.002 53.750 ± 0.666
scLDM (𝜔=5) 12.900 ± 0.069 0.320 ± 0.004 105.365 ± 1.935
scLDM (𝜔=10) 14.911 ± 0.091 0.436 ± 0.005 166.877 ± 3.036

genetic perturbations in HepG2 cells to evaluate generalization to unseen cell context–perturbation pairs.
For both datasets, we restricted analysis to the top 2,000 highly variable genes (HVGs) following Adduri et al.
[5]. We compare our model against established baselines: CPA [38], scVI [12], scGPT [52] and STATE-Tx
[5].
Results and Discussion The results presented in Table 3 demonstrate that our proposed approach

significantly outperforms the baselines in both the Parse 1Mdataset (cytokine perturbation) and the Replogle
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dataset (gene knockouts). Our model scLDM is substantially better across all metrics, improving up to ∼90%
for MMD2 RBF and FD for the Parse 1M dataset and ∼60% for MMD2 RBF and FD for the Replogle dataset.
This demonstrates how our model outperforms others in capturing the full range of cellular variation in
perturbation responses across unseen combinations of cell contexts and perturbations. In Appendix 13, we
report four additional metrics on perturbation predictions in unseen context, using the cell-eval [5]. Our
model is competitive, and sometimes outperforms the stronger baseline STATE-Tx across both datasets.
In Figure 3, we report a qualitative evaluation of our model generative performances for the Parse 1M

dataset for unseen combinations of CD4-Naive cells with various cytokine perturbations such as IL-9 and
LT-alpha1-beta2. Furthermore, we show the same for Replogle dataset for unseen combinations of HepG2
cells with PPP6c and ZDHHC7 gene edits.

(a) all cells (b) CD4 Naive + IL-9 (c) CD4 Naive + LT-alpha1-beta2 (d) all cells (e) hepg2 + PPP6C (f) hepg2 + ZDHHC7

Pa
rs

e 
1M
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Figure 3. Conditional generation across multiple attributes: cell type and perturbation. (a) Gener-
ated vs. true cells across all cell types in the Parse 1M dataset show close alignment. (b–c) For CD4
Naive cells, conditioning on cytokine perturbations (IL-9, LT-alpha1-beta2) produces perturbation-
specific shifts consistent with the true test distributions. (d) Generated vs. true cells across all cell
types in the Replogle dataset. (e–f) For HepG2 cells, conditioning on genetic perturbations (PPP6C,
ZDHHC7) yields realistic perturbation-dependent distributions that closely follow the experimental
data.

In Appendix 15, we additionally report reconstruction results between the VAE component of scLDM
and scVI for both datasets, showing how our improved transformer-based VAE significantly outperforms
MLP-based scVI on the reconstruction task. Finally, we also tested how the additive conditioning for
the classifier-free guidance proposed in [20] performs compared to the standard classifier-free guidance
approach [46]. In Supplementary Table 15, we report that the standard approach is superior to the additive
approach in multi-attribute conditional settings for perturbational single-cell data.

4.3 scLDM-VAE embedding evaluations on classification tasks

Table 4. COVID-19 model performance comparison (averaged across all donors). Since all standard
errors are below 0.003 (see Appendix L.6), they are ommitted in this table.

Model F1 Score Recall Precision

TranscriptFormer 0.814 0.829 0.801
UCE 0.775 0.781 0.771
scGPT 0.779 0.793 0.766
Geneformer 0.768 0.781 0.757
AIDO.Cell 0.717 0.729 0.708
scVI 0.675 0.680 0.680

scLDM (20M) 0.811 0.827 0.797
scLDM (70M) 0.815 0.830 0.801
scLDM (270M) 0.820 0.836 0.806

Details For the third experiment, we leveraged two datasets: the first dataset is a human lung single-cell
RNA-sequencing data from healthy donors and patients affected by COVID-19 [53], the second dataset
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consists of 6 tissues from the Tabula Sapiens 2.0 [54]. The goal of this experiment is to verify the quality of
embeddings provided by the auto-encoder on a downstream task (here: classification). We compare our
approach to embeddings provided by TranscriptFormer [55], scVI [12], AIDO.Cell [56], Geneformer [57],
scGPT [52], UCE [58]. We used Human Census data (CellxGene)3 to train three versions of scLDM-VAE,
namely, with around 20M parameters, 70M parameters, and 270M parameters. For our scLDM-VAE and
benchmark models, both datasets represent out-of-distribution data that were unseen during training.
To evaluate the quality of the learned representations, we process each of the four COVID-19 donors

through the models to generate cell embeddings. For scLDM variants, we use the mean of the latent
distribution, 𝜇(𝐱), which is flattened to a 4096-dimensional vector. To ensure fair comparison across models
with different embedding dimensions, we apply principal component analysis (PCA) to all embeddings,
retaining the top 128 principal components. For each donor independently, we train an unregularized logistic
regression classifier to distinguish infected from uninfected cells using 5-fold cross-validation. The final
metrics are computed as equally weighted averages across the four donors, with uncertainties propagated

using standard error addition in quadrature: 𝜎combined =
1
𝑛

√∑𝑛
𝑖=1 𝜎

2
𝑖 , where 𝑛 = 4 donors.

Table 5. Tabula Sapiens 2.0 model performance comparison (averaged across all tissues). Since all
standard errors are below 0.003 (see Appendix L.6), they are ommitted in this table.

Model F1 Score Recall Precision

scGPT 0.8 0.802 0.806
scVI 0.799 0.794 0.814
TranscriptFormer 0.799 0.8 0.802
UCE 0.796 0.797 0.801
Geneformer 0.777 0.776 0.786
AIDO.Cell 0.724 0.715 0.748

scLDM (20M) 0.804 0.805 0.812
scLDM (70M) 0.802 0.802 0.810
scLDM (270M) 0.802 0.803 0.811

For the Tabula Sapiens 2.0 dataset, we evaluated cell type classification across 6 tissues: blood, spleen,
lymph node, small intestine, thymus, and liver. Following the same protocol as the COVID-19 analysis, we
stratified samples by tissue instead of donor and filtered out cell types with fewer than 100 cells to ensure
robust classification. We employed multinomial logistic regression for the multi-class cell type prediction
task. Final metrics are averaged over tissues with propagated uncertianites (see Appendix L.6).

Results and discussion As shown in Table 4, our 270M and 70M models achieve superior performance
across all evaluated metrics for COVID-19 infection detection. The performance differences between
scLDM (270M) and TranscriptFormer—the strongest benchmark model—represent meaningful differences
given the measurement uncertainty, with our model achieving F1 score of 0.820 ± 0.001 compared to
TranscriptFormer’s 0.814±0.002. The strong discriminative performance demonstrates that our transformer-
based VAE learns biologically meaningful representations that capture infection-related transcriptional
signatures. We observe substantial improvements over the VAE-based scVI model (F1: 0.675 ± 0.001),
highlighting the advantages of our architectural innovations and model scale.
For the Tabula Sapiens 2.0 classification results shown in Table 5, the differences in F1 scores between

the scLDMmodel variants are within measurement uncertainty and may not be significant. Moreover, all
top-performing models—scLDM variants, scGPT, scVI, and TranscriptFormer—achieve F1 scores within
each other’s uncertainties (ranging from 0.799 to 0.804with standard errors of 0.002), indicating comparable
performance for multi-class cell type classification. The consistent performance across both binary (COVID-
19 infection) and multi-class (cell type) classification tasks validates the biological utility of our learned
embeddings, making them valuable for biological discovery applications beyond generation.

3https://cellxgene.cziscience.com/

https://cellxgene.cziscience.com/
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5 Conclusion

In this paper, we demonstrate that enforcing the inductive bias of exchangeability is crucial for the generative
modeling of single-cell data. We introduced a scalable architecture that combines a permutation-invariant
encoder and a permutation-equivariant decoder within a fully transformer-based VAEwith a latent diffusion
model parameterized using DiTs, achieving state-of-the-art performance on cell generation benchmarks,
both observational and perturbational data, as well as downstream classification tasks. Our work extends
beyond imposing artificial structure on gene expression data, instead providing a principled framework for
learning from unordered sets. This approach is not limited to transcriptomics and lays the groundwork for
developing foundational models for other exchangeable biological data, such as proteomics and epigenomics,
as well as multi-omics and multi-modal data, thereby enabling more faithful and powerful virtual models of
cellular biology.
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A LLMUsage Disclaimer

We used large language models (ChatGPT and Claude) to assist with manuscript polishing, including
grammar and clarity improvements, and to verify technical definitions and terminology. All scientific
content, analysis, and conclusions are the original work of the authors.

B Definitions

Self-attention Attentionmechanism is defined asAtt(𝐐,𝐊,𝐕)
𝑑𝑓
= sof tmax(𝐐𝐊⊤)𝐕, where𝐐 ∈ ℝ𝑚×𝐷 , 𝐊 ∈

ℝ𝑀×𝐷 , 𝐕 ∈ ℝ𝑀×𝐷 , and sof tmax(⋅) is the row-wise softmax function.4 Typically, 𝐐,𝐊 and 𝐕 are results of
linear transformations of given inputs. If all matrices are calculated based on the same input 𝐗, we refer to
it as self-attention.

Cross-attention However, if 𝐐 is calculated using 𝐗, and another input 𝐘 is used to obtain 𝐊 and 𝐕,
then we refer to it as cross-attention.

Multi-head attention Att𝐾 denotes a multi-head attention with 𝐾 heads, i.e., a concatenation of 𝐾
attention layers.

Multi-head Attention Block (MAB) A multi-head attention block (MAB) is defined as follows [31, 59]:

MAB(𝐗,𝐘)
𝑑𝑓
=𝑓(𝐗,𝐘) + relu(𝑓(𝐗, 𝐘)𝐖), (9)

𝑓(𝐗,𝐘)
𝑑𝑓
=𝐗𝐖𝑓 + Att𝐾(𝐐(𝐗),𝐊(𝐘), 𝐕(𝐘)),

where 𝑓(𝐗,𝐘)
𝑑𝑓
= 𝐗𝐖𝑓 + Att𝐾(𝐐(𝐗),𝐊(𝐘), 𝐕(𝐘)),𝐖 and𝐖𝑓 are learnable weight matrices.

Set Attention Block (SAB) Set Attention Block (SAB) is defined as follows [31]:

SAB(𝐗)
𝑑𝑓
= MAB(𝐗,𝐗). (10)

Induced Set Attention Block (ISAB) Induced Set Attention Block (ISAB) is defined as follows [31]:

ISAB(𝐗)
𝑑𝑓
= MAB (𝐗,MAB(𝐔,𝐗)) , (11)

where𝐔 ∈ ℝ𝑚×𝐷 are inducing points, i.e., a global weight matrix learnable by backpropagation.

Pooling by Multi-Head Attention Pooling by Multi-head Attention (PMA) is defined as follows:

PMA(𝐗) = MAB(𝐒, rFF(𝐗)), (12)

where 𝐒 ∈ ℝ𝑚×𝐷 is a matrix of learnable inducing points (or pseudoinputs), and rFF ∶ ℝ𝑀×𝐷 → ℝ𝑀×𝐷 is a
row-wise linear layer. For fixed inducing points 𝐒 in PMA, this layer is permutation-invariant (this is due to
applying the attention layer, see Property 3 in Appendix C).

4We skip scaling 𝐐𝐊⊤ by 1∕
√
𝐷 to avoid unnecessary clutter.
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C Permutation-equivariance and Permutation-invariance of attention mecha-
nism

The row-wise self-attention function fulfills the following property:

Property 1. For a given matrix 𝐗 ∈ ℝ𝑀×𝐷 , and two permutation matrices 𝐏𝑀 ∈ {0, 1}𝑀×𝑀 and 𝐏𝐷 ∈
{0, 1}𝐷×𝐷 , the following statements hold true for the row-wise softmax function: (i) sof tmax(𝐗𝐏⊤𝐷) =
sof tmax(𝐗)𝐏⊤𝐷 , (ii) sof tmax(𝐏𝑀𝐗) = 𝐏𝑀sof tmax(𝐗).

Property 1 tells us that applying the permutation to the softmax function just reorders its columns/rows,
hence, applying softmax before or after the reordering gives the same vector, merely shuffled.
Before we move to next properties, we recall that any permutation matrix is orthogonal, hence, 𝐏𝐏⊤ =

𝐏⊤𝐏 = 𝐈.
It is a well-known fact that the (self-)attention mechanism is permutation-equivariant, namely, the

following property holds true:

Property 2. For a given permutation matrix 𝐏 ∈ {0, 1}𝑀×𝑀 , the attention mechanism is permutation-
equivariant, i.e., Att (𝐏𝐐(𝐗), 𝐏𝐊(𝐗), 𝐏𝐕(𝐗)) = 𝐏 Att (𝐐(𝐗),𝐊(𝐗), 𝐕(𝐗)).

Proof. First, we notice that: 𝐐(𝐏𝐗) = 𝐏𝐗𝐖𝑄 = 𝐏𝐐(𝐗), 𝐊(𝐏𝐗) = 𝐏𝐗𝐖𝐾 = 𝐏𝐊(𝐗) and 𝐕(𝐏𝐗) =
𝐏𝐗𝐖𝑉 = 𝐏𝐕(𝐗). Next, to avoid unnecessary clutter, let us skip the dependency on 𝐗. Then:

Att (𝐏𝐐, 𝐏𝐊, 𝐏𝐕) = sof tmax(𝐏𝐐(𝐏𝐊)⊤)𝐏𝐕

= sof tmax(𝐏𝐐𝐊⊤𝐏⊤)𝐏𝐕

= 𝐏 sof tmax(𝐐𝐊⊤)𝐏⊤𝐏𝐕

= 𝐏 sof tmax(𝐐𝐊⊤)𝐕
= 𝐏 Att (𝐐,𝐊,𝐕) .

□

The attention mechanism becomes permutation-invariant for 𝐐 being a global parameter matrix only if
the following property holds true:

Property 3. For a given permutation matrix 𝐏 ∈ {0, 1}𝑀×𝑀 , the attention mechanism with inducing points
𝐐 ∈ ℝ𝑚×𝐷 is permutation-invariant, i.e., Att (𝐐, 𝐏𝐊(𝐗), 𝐏𝐕(𝐗)) = Att (𝐐,𝐊(𝐗), 𝐕(𝐗)).

Proof. First, we notice that: 𝐊(𝐏𝐗) = 𝐏𝐗𝐖𝐾 = 𝐏𝐊(𝐗) and 𝐕(𝐏𝐗) = 𝐏𝐗𝐖𝑉 = 𝐏𝐕(𝐗). Next, to avoid
unnecessary clutter, let us skip the dependency on 𝐗. Then:

Att (𝐐, 𝐏𝐊, 𝐏𝐕) = sof tmax(𝐐(𝐏𝐊)⊤)𝐏𝐕

= sof tmax(𝐐𝐊⊤𝐏⊤)𝐏𝐕

= sof tmax(𝐐𝐊⊤)𝐏⊤𝐏𝐕

= sof tmax(𝐐𝐊⊤)𝐕
= Att (𝐐,𝐊,𝐕) .

□

However, for a latent matrix 𝐙 ∈ ℝ𝑚×𝐷 obtained by transforming𝐗 in the permutation-invariant manner,
an embedding matrix 𝐄 ∈ ℝ𝑉×𝐷 , the inducing points determined by a set of indices ℐ, i.e., 𝐐 = 𝐄ℐ , is
permutation-equivariant if the indices ℐ are permuted, i.e., a permutation of indices 𝜋(ℐ) induces the matrix
𝐏, thus, 𝐏𝐐 = 𝐄𝜋(ℐ). Then, the following property holds true:

Property 4. For a given permutation of indices ℐ, 𝜋(ℐ), or, equivalently, a matrix permutation 𝐏 ∈ {0, 1}|ℐ|×|ℐ|,
and latents 𝐙 calculated by a permutation-invariant function 𝑓, i.e., 𝐙 = 𝑓(𝐏𝐗), the attention mecha-
nism with inducing points 𝐐 ∈ ℝ|ℐ|×𝐷 is permutation-equivariant, i.e., Att (𝐏𝐐,𝐊(𝑓(𝐏𝐗)), 𝐕(𝑓(𝐏𝐗))) =
𝐏Att (𝐐,𝐊(𝐙), 𝐕(𝐙)).
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Proof. First, since 𝑓 is permutation-invariance, we get 𝐙 = 𝑓(𝐏𝐗) = 𝑓(𝐗). Second, we note that𝐊(𝐏𝐙) =
𝐏𝐙𝐖𝐾 = 𝐏𝐊(𝐙) and 𝐕(𝐏𝐙) = 𝐏𝐙𝐖𝑉 = 𝐏𝐕(𝐙). Then:

Att (𝐏𝐐,𝐊(𝑓(𝐏𝐗)), 𝐕(𝑓(𝐏𝐗))) = sof tmax(𝐏𝐐𝐊(𝑓(𝐏𝐗))⊤)𝐕(𝑓(𝐏𝐗))

= 𝐏 sof tmax(𝐐𝐊(𝑓(𝐗))⊤)𝐕(𝑓(𝐗))

= 𝐏 sof tmax(𝐐𝐊(𝐙)⊤)𝐕(𝐙)
= 𝐏 Att (𝐐,𝐊(𝐙), 𝐕(𝐙)) .

□

D Code

The implementation of our methods is available online at [https://github.com/czi-ai/scLDM]

E RelatedWork (extended)

Modeling a probability distribution over order-agnostic objects like sets is challenging for at least two reasons.
First, a model must be permutation-equivariant, meaning, changing the order of variables changes the
order of parameters as well. Second, the model must also be exchangeable. Additionally, in the case of gene
expression, for various tissues, we get different subsets of genes, thus, ideally, we would like to learn a single
model to transfer hidden dependencies (correlations) among cells from distinct tissues.

Autoregressive Models A varying-size objects are typically modeled by autoregressive models (ARMs)
like transformer-based LLMs for text [60] or WaveNet for audio [61]. However, ARMs assume a fixed order
of variables, otherwise, like in the case of sets, their performance can drop significantly. Recently, it has been
shown that misspecifying the order in ARMs can result in a huge drop in their performance [62]. There are
ways of dealing with the order in ARMs [63], but they are not well-suited for processing objects without an
explicitly defined order.

MaskedDiffusionModels Recently, amasked version of diffusion-basedmodels [64] are used to generate
text quite successfully [65] since they can alleviate the need of specifying the order of generation. However,
as proven in [62], masked diffusion-based models are order-agnostic but at the price of learning an extremely
complex task of predicting a variable value conditioned on a set of unmasked variables in arbitrary positions.

Variational Auto-Encoders Another modeling approach is to define a Variational Auto-Encoder [23, 24]
since this framework allows defining its components in a flexible manner. In [25], a SetVAE was formulated
by introducing two separate latent variables to deal with varying size of sets, namely, 𝐳ℐ of the same
dimensionality as 𝐱ℐ such that 𝐳𝑖 corresponds to 𝐱𝑖, 𝑖 ∈ ℐ, and an additional vector of latents 𝐜 ∈ ℝ𝑑1

of a constant size 𝑑1. In general, 𝐱ℐ can be generated given 𝐳ℐ and each 𝐳𝑖 is generated given 𝐜, i.e.,
𝑝(𝐱ℐ|ℐ, 𝐳ℐ) 𝑝(𝐳ℐ|𝐜) 𝑝(𝐜), where 𝑝(𝐱ℐ|ℐ, 𝐳ℐ) =

∏|ℐ|
𝑖=1 𝑝(𝐱𝑖|𝐳𝑖) and 𝑝(𝐳ℐ|𝐜) = 𝑝(|ℐ|)

∏|ℐ|
𝑖=1 𝑝(𝐳𝑖|𝐜). Then, the

variational posteriors can take the following form: 𝑞(𝐳ℐ|𝐱ℐ) = 𝛿(|ℐ|)
∏|ℐ|

𝑖=1 𝑞(𝐳𝑖|𝐱𝑖), where 𝛿(⋅) is Dirac’s
delta, and additionally we have 𝑞(𝐜|𝐱ℐ). In [25], a few simplifications weremade such that themodel fits well
modeling point clouds (sets of 3-D points), namely, for all 𝑖 = 1, … , |ℐ|, 𝑝(𝐳𝑖|𝐜) = 𝑝(𝐳𝑖), and 𝑞(𝐳𝑖|𝐜) = 𝑝(𝐳𝑖).
Further, the authors of [25] suggested to define a hierarchical VAE with multiple layers of 𝐳ℐ ’s and 𝐜’s
since a single layer did not result in good performance, and they replaced the conditional likelihood with
Chamfer Distance as a well-suited distance for point clouds. In this paper, we find a great appeal of the VAE
framework and its flexibility; however, we claim using two distinct latents and a hierarchical latent structure
to be unnecessary. Instead, we suggest picking a careful parameterization to be crucial in obtaining high
performance.

https://github.com/czi-ai/scLDM
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Permutation-equivariant/invariant Parameterizations Deep Neural Networks are widely used as
transformations of raw data and parameterizations of probability distributions. It is advocated (but also
observed empirically) that modeling probability distributions requires utilizing symmetries in data [26]. For
instance, for objects whose dimensions can be shuffled without changing the underlying latent structure,
we need either permutation-invariant or permutation-equivariant transformations. For a given permutation
matrix 𝐏, a function 𝑓 ∶ 𝕏 → 𝕐 is permutation-invariant if 𝑓(𝐏𝐱) = 𝐲; on the other hand, a function
𝑓 ∶ 𝕏 → 𝕐 is permutation-equivariant if 𝑓(𝐏𝐱) = 𝐏𝐲.
A general blueprint for composing geometric deep neural networks is a composition of permutation-

invariant layers and/pr permutation-equivariant layers, with nonlinearity activation functions in between
[26]. An example of such a blueprint is an architecture called DeepSets [27]. It formulates a general
permutation-equivariance layer treating all variables consistently regardless their positions. Then it applies
a symmetric aggregation like averaging or other pooling operators [28–30] to combine these equivariant
features in a permutation-invariant fashion, ensuring the order of inputs does not affect the output. The
drawback of this approach is that all elements are processed separately before being aggregated with a
non-learnable pooling operator. This manner of constructing permutation-invariant transformations might
be highly limiting.
A potential solution to that issue is replacing static pooling with a learned attention mechanism, al-

lowing utilizing transformer-based architectures to transform all elements jointly in an equivariant and
invariant fashion. An example of a fully-transformer-based model is SetTransformer [31] that builds

on the following idea. Attention mechanism is defined as Att(𝐐,𝐊,𝐕)
𝑑𝑓
= sof tmax(𝐐𝐊⊤)𝐕, where

𝐐 ∈ ℝ𝑚×𝐷 , 𝐊 ∈ ℝ𝑀×𝐷 , 𝐕 ∈ ℝ𝑀×𝐷 , and sof tmax(⋅) is the row-wise softmax function.5 Typically, 𝐐,
𝐊 and 𝐕 are results of linear transformations of some inputs. If all matrices are calculated based on the
same input 𝐗, we refer to it as self-attention. However, if 𝐐 is calculated using 𝐗, and another input 𝐘 is
used to obtain𝐊 and 𝐕, then we refer to it as cross-attention. Let Att𝐾 denote a multi-head attention with 𝐾
heads, i.e., a concatenation of 𝐾 attention layers. SetTransformer introduces a multi-head attention block
(MAB) [31, 59]:

MAB(𝐗,𝐘)
𝑑𝑓
=𝑓(𝐗,𝐘) + relu(𝑓(𝐗, 𝐘)𝐖), (13)

𝑓(𝐗,𝐘)
𝑑𝑓
=𝐗𝐖𝑓 + Att𝐾(𝐐(𝐗),𝐊(𝐘), 𝐕(𝐘)),

where 𝑓(𝐗,𝐘)
𝑑𝑓
= 𝐗𝐖𝑓 + Att𝐾(𝐐(𝐗),𝐊(𝐘), 𝐕(𝐘)), 𝐖 and 𝐖𝑓 are learnable weight matrices. Given

MAB, SetTransformer further defines the following two blocks, namely, the Set Attention Block (SAB)

and Induced Set Attention Block (ISAB): SAB(𝐗)
𝑑𝑓
= MAB(𝐗,𝐗), and ISAB(𝐗)

𝑑𝑓
= MAB (𝐗,MAB(𝐔,𝐗)),

where 𝐔 ∈ ℝ𝑚×𝐷 are inducing points, i.e., a global weight matrix learnable by backpropagation. ISAB
allows to change the size of the input, and similarly to SAB, it is permutation-equivariant [31]. To obtain
a permutation-invariant transformation, SetTransformer proposes to use another layer called Pooling by
Multi-head Attention (PMA):

PMA(𝐗) = MAB(𝐒, rFF(𝐗)), (14)
where 𝐒 ∈ ℝ𝑚×𝐷 is a matrix of learnable inducing points (or pseudoinputs), and rFF ∶ ℝ𝑀×𝐷 → ℝ𝑀×𝐷 is
a row-wise linear layer. For fixed inducing points 𝐒 in PMA, this layer is permutation-invariant (this is
due to applying the attention layer, see Property 3 in Appendix C). These building blocks can be used to
formulate a deep neural network for parameterizing a probabilistic model. However, we advocate for a
different parameterization that applies a single multi-head attention layer in a transformer block to obtain a
fixed-size output, and then a series of transformer blocks.
Latent Diffusion Models Latent Diffusion Models (LDMs) perform diffusion processes in learned

latent spaces rather than directly in high-dimensional data spaces. Stable Diffusion [32] pioneered this
approach for text-to-image synthesis by training diffusion models in the latent space of a pre-trained
VAE, dramatically reducing computational costs while maintaining generation quality. This paradigm has
proven effective across diverse scientific domains: all-atom diffusion transformers [33] generate molecules

5We skip scaling 𝐐𝐊⊤ by 1∕
√
𝐷 to avoid unnecessary clutter.
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and materials with atomic-level precision, similary LaM-SLidE [34] utilizes transformer-based LMD for
molecular dynamics (among others), while La-proteina [35] employs transformer-based partially latent flow
matching for atomistic protein generation. These advances demonstrate the versatility of latent diffusion
approaches for complex, high-dimensional scientific data across multiple modalities. Here, we extend this
framework to single-cell transcriptomics by proposing a transformer-based LDM for this biological data
type.

GenerativeModels for scRNA-seq In the context of single-cell genomics, numerous generative models
have been developed for (conditional) sampling of gene expression profiles. scVI [12] represents an early
VAE-based generative model, while more recent approaches include GAN-based and diffusion-based
architectures such as scGAN [36] and scDiffusion [19]. These models operate in continuous space and
therefore transform discrete gene expression data into log-normalized counts. Recently, latent diffusion
frameworks have emerged with models like SCLD [37] and CFGen [20], which leverage latent diffusion
frameworks. Additionally, application-specific generative models have been developed for perturbational
single-cell genomics, including CPA [38], SquiDiff [39], CellFlow [40], and CellOT [41], which are tailored
to capture the effects of genetic and chemical perturbations on cellular states. Our approach is similar in
vein to CFGen and SCLD, but leverages transformer-based architectures for both our newly proposed VAE
as well as the latent diffusion model.

F Our Approach: Additional information

F.1 Gene expression data embedding: Replacing dropouts

We present a method for processing sparse gene expression data that focuses computational resources
on biologically relevant signals. Given a set of 𝐷 genes with their corresponding expression counts, our
approach addresses the inherent sparsity in single-cell RNA sequencing data, where typically 70% or more
of gene-cell entries are zero.

Let ℐ = {1, 2, … , 𝐷} denote the complete set of gene IDs represented as integers, and let 𝐱 = (𝑥1, 𝑥2, … , 𝑥𝐷)
represent the corresponding gene expression counts for a given cell, where 𝑥𝑖 ∈ ℕ0 is the count for gene 𝑔𝑖 ,
then an 𝑛-th single cell is defined as a tuple (𝐱ℐ𝑛 , ℐ𝑛).
Our method proceeds as follows:
(1) Context length constraint: We define amaximumcontext length 𝑑 < 𝐷 to limit the computational

complexity of downstream processing.
(2) Expression-based filtering: For each cell, we identify the set of expressed genes:

ℰ = {𝑖 ∈ ℐ ∶ 𝑥𝑖 > 0} (15)

with corresponding expression values 𝐱ℰ = {𝑥𝑖 ∶ 𝑖 ∈ ℰ}.
(3) Context construction: We construct a fixed-length input representation of dimension 𝑑. When

|ℰ| < 𝑑 (which is typically the case due to high sparsity), we pad the input with artificial tokens to
maintain consistent dimensionality:

Input = {
{(𝑥𝑖 , 𝑖)}𝑖∈ℰ ∪ {(0, PAD)}𝑑−|ℰ| if |ℰ| < 𝑑
{(𝑥𝑖 , 𝑖)}𝑖∈ℰ if |ℰ| = 𝑑

(16)

where PAD is a special token for zero expression count.
This approach offers both computational and biological advantages. By excluding zero-expression genes

(dropouts) from the input representation, we enable themodel to focus exclusively on expressed genes, which
carry the meaningful biological signal. The padding tokens serve purely as placeholders for implementation
consistency and do not introduce spurious biological information, as they are explicitly marked with zero
counts. This design choice aligns with the biological understanding that in single-cell data, the absence of
detected expression often represents technical dropouts rather than meaningful biological zeros, making it
advantageous to direct the model’s attention solely to the detected expression events.
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F.2 Conditional likelihood: The parameterization of Negative Binomial

Wemodel the gene expression counts using a Negative Binomial distribution, which effectively captures the
overdispersion commonly observed in single-cell RNA-seq data. The conditional likelihood for our model is
specified as follows.
Let 𝐡(𝐙) ∈ ℝ𝐷 denote the output of our neural network for a given cell embeddibg 𝐙, where 𝐷 is the

number of genes. We apply a softmax transformation to obtain normalized ratios:

𝑝𝑖(𝐙) =
exp(𝐡𝑖(𝐙))

∑𝐷
𝑗=1 exp(𝐡𝑗(𝐙))

(17)

where 𝑖 = 1, 2, … , 𝐷, and
∑𝐷

𝑖=1 𝑝𝑖 = 1.
To obtain the expected expression counts, we scale these probabilities by the cell-specific library size 𝐿,

namely:
𝜂𝑖(𝐙) = 𝐿 ⋅ 𝑝𝑖(𝐙) (18)

where 𝜇𝑖 represents the mean parameter for gene 𝑖 in the Negative Binomial distribution.
The gene expression count 𝑥𝑖 for gene 𝑖 is then modeled as:

𝑥𝑖 ∼ NB(𝜂𝑖(𝐙), 𝛼𝑖) (19)

where NB denotes the Negative Binomial distribution parameterized by mean 𝜇𝑖 and dispersion 𝛼𝑖 . The
probability mass function is given by:

𝑝(𝑥𝑖|𝜂𝑖(𝐙), 𝛼𝑖) =
Γ(𝑥𝑖 + 𝛼−1𝑖 )

Γ(𝑥𝑖 + 1)Γ(𝛼−1𝑖 )
(

𝛼−1𝑖
𝛼−1𝑖 + 𝜂𝑖(𝐙)

)
𝛼−1𝑖

(
𝜂𝑖(𝐙)

𝛼−1𝑖 + 𝜂𝑖(𝐙)
)
𝑥𝑖

(20)

We consider two parameterizations for the dispersion:
(1) Shared dispersion: A single parameter 𝛼 is used for all genes, i.e., 𝛼𝑖 = 𝛼 for all 𝑖 ∈ {1, 2, … , 𝐷}.

This reduces the number of parameters and assumes homogeneous overdispersion across genes.
(2) Gene-specific dispersion: Each gene has its own dispersion parameter, resulting in a vector

𝜶 = (𝛼1, 𝛼2, … , 𝛼𝐷). This allows for heterogeneous overdispersion patterns across genes, providing
greater flexibility at the cost of additional parameters.

This formulation ensures that the predicted expression values respect the constraint that total counts
sum to the observed library size, while the Negative Binomial distribution appropriately models the count
nature and overdispersion of the data. The softmax transformation guarantees that the neural network
learns a proper distribution over genes, making the model interpretable as learning the relative expression
probabilities for each cell.

G Datasets

General In our experiments, we used the following datasets: Dentate gyrus, Tabula Muris, Human Lung
Census Atlas (HLCA), Parse1M and Replogle-Nadig; see Table 6 for details.

Experiment 1: Cell generation (benchmarks) In the cell generation experiment, we used three widely
used datasets, namely, Dentate gyrus, Tabula Muris, and HLCA. Dentate gyrus is the smallest dataset (only
18k cell and 17k genes). Tabula Muris is a small dataset with over 245k cells and almost 20k genes. Human
Lung Cell Atlas (HLCA) is the largest, having about 585k cells and almost 28k genes.

Experiment 2: Parse1M & Replogle In the second experiment, we used a curated subset of 10 Million
Human PBMC dataset. We carried out experiments on 2k highly variable genes (HVGs). In this data, we
focused on a single donor who had 18 cell types undergone 90 cytokine perturbations as well as a control
treatment. We left out for testing the cell type ’CD4 Naive’ and 27 cytokine perturbations.
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Next, we used the well-known Replogle-Nadig dataset which consists of four cell lines and 2024 gene-
edits. We carried out experiments on 2k highly variable genes (HVGs). All 2024 gene-edits in three cell-lines
(’jurkat’, ’k562’, ’rpe1’), along with a subset of edits from the ’hepg2’ cell line were used for taining. The
remaining ’hepg2’ gene-edits were held out for testing. We held out 372 gene edits from hepg2 cells.

Experiment 3: COVID-19 and Tabula Sapiens 2.0 In the fourth experiment, we used two datasets for
embedding evaluation. First, we used the scRNA-seq experimental dataset of four healthy donors’ lung
sections infected with SARS-CoV-2 [53]. Data were downloaded from CZ CELLxGENE6. Second, we used
the Tabula Sapiens 2.0 dataset [54], a comprehensive single-cell atlas of human tissues. We focused on
6 tissues: blood, spleen, lymph node, small intestine, thymus, and liver. We filtered out cell types with
fewer than 100 cells to ensure robust classification performance and used the resulting filtered dataset for
multinomial logistic regression-based cell type prediction tasks.

Table 6. Summary of datasets used in the experiments.

Experiment Dataset name No. of cells No. of genes No. of cell types/lines
1 Dentate gyrus 18,213 17,002 14 cell types
1 Tabula Muris 245,389 19,734 123 cell types
1 HLCA 584,944 27,997 50 cell types
2 Parse1M 1,267,690 2,000 (HVGs) 18 cell types
2 Replogle-Nadig 624,158 2,000 (HVGs) 4 cell lines
3 COVID-19 354,026 27,998 55 cell types
3 Tabula Sapiens 2.0 1,482,026 ∼ 25k 22 cell types

H Baselines

scVI Single-cell Variational Inference (scVI) [12] is VAE-based generative models designed for single-cell
discrete data. Following the standard VAE framework, this model learns a Gaussian latent space that is
subsequently decoded into the parameters of a discrete conditional likelihood model. For the reconstruction.
For the observational data experiments, we implemented our own scVI model following default parameters
from [20]. For the perturbational dataset, we used the implementation from the State [5] reproducibility
repo https://github.com/ArcInstitute/State-reproduce, using default parameters. We train the
models for 120k steps.

scDiffusion A version of a latent diffusion model for single-cell gene expression data is scDiffusion [19].
The scDiffusion model consists of three modules. The first module is an auto-encoderthat transforms
gene expression patterns into a compact representation space, allowing dimensionality reduction and
identification of complex cellular measurements. In the latent space, a denoising network is trained to
reverse a diffusion process applied to the latent embeddings, turning noise into meaningful biological
signal encoded in the latent space. To ensure guided generation, a third model is trained, a classifier, for
incorporating cell type or other biological attributes.

CFGen CFGen is a current state-of-the-art latent diffusion model that builds upon scVI, training a latent
flow matching model in the VAE’s latent space [20]. Similar to our approach, CFGen employs a two-stage
training strategy: first training the autoencoder, then training the flowmatchingmodel on theVAE-generated
embeddings. While CFGen introduces additive steering through classifier-free guidance, we utilize joint
attribute control (see Table 15). However, since in the observational experiments we only conditioned on
a single attribute, we do not think this is the source of the performance difference. Additionally, CFGen

6https://cellxgene.cziscience.com/collections/2a9a17c9-1f61-4877-b384-b8cd5ffa4085

https://github.com/ArcInstitute/State-reproduce
https://cellxgene.cziscience.com/collections/2a9a17c9-1f61-4877-b384-b8cd5ffa4085
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models the library size within the diffusion framework and samples from the mean and standard deviation
of the library size distribution for conditional generation. We adapted this approach for sampling library
size in our Negative Binomial conditional likelihood; however, unlike CFGen, we do not condition our
Diffusion Transformer model on library size. We did not retrain CFGen but used the checkpoints for each
observational dataset from the original repository. We followed the notebook for sampling from the model
using guidance value of 1 (default).

CPA Compositional Perturbation Autoencoder (CPA) [13] is a deep generative model developed to predict
gene expression changes under perturbations and their combinations. CPA disentangles latent representa-
tions of basal cellular state, perturbation effects, and additional covariates such as cell type. By recombining
these factors through its decoder, CPA can reconstruct observed expression profiles and generalize to unseen
perturbation–covariate combinations. This compositional structure enables CPA to extrapolate beyond
training data, making it particularly well-suited for evaluating out-of-distribution generalization in pertur-
bational single-cell datasets. For each dataset (Replogle and Parse1M) we trained 3 models with different
seeds, but the same leave-out test set. We used the implementation from the State [5] reproducibility
repo https://github.com/ArcInstitute/State-reproduce, using default parameters. We train the
models for 120k steps.

scGPT For each dataset (Replogle and Parse1M) we trained 3 models with different seeds, but the same
leave-out test set. We used as baseline the scGPT [52] model in the ’genetic’ configuration for the Replogle-
Nadig dataset, and in the ’chemical’ configuration for the Parse 1M dataset. We used the implementation
from the State [5] reproducibility repo https://github.com/ArcInstitute/State-reproduce, using
default parameters. We train both scGPT models for 80k steps. For the ‘genetic‘ configuration, we noticed
that not all genes were present in the vocabulary (scGPT human downloaded from the original repo,
following the baseline reproducibility repo from STATE), and that some genetic perturbations would be
dropped. Hence, we built a feature set that consists of the union of 2000 HVG as well as the 2024 genetic
perturbations, recovering 3482 genes. The ‘scGPT genetic‘ model was therefore trained on 3482 genes, but
evaluated on 1962 genes, which correspond to the subset of HVG that are part of the scGPT vocabulary. For
the ‘chemical‘ configuration, we trained on the same feature set of the rest of the baselines 2000 HVG.

STATE For each dataset (Replogle and Parse1M) we trained 3 models with different seeds, but the same
leave-out test set. We used the STATE-Tx implementation from https://github.com/ArcInstitute/
State-reproduce and trained for 80k steps for both datasets. We used the model configurations used in
this notebook https://colab.research.google.com/drive/1Ih-KtTEsPqDQnjTh6etVv_f-gRAA86ZN
for both datasets.

Perturb mean The Perturbation Mean baseline provides predictions by combining cell-type-specific
control means with learned perturbation effects. The model operates as follows:

For each cell type 𝑐 and perturbation𝑝, we calculate separatemeans for control and perturbed populations:

𝝁ctrl𝑐 = 1
|𝒞𝑐|

∑

𝑖∈𝒞𝑐

𝐱(𝑖), 𝝁pert𝑐,𝑝 = 1
|𝒫𝑐,𝑝|

∑

𝑖∈𝒫𝑐,𝑝

𝐱(𝑖) (21)

Here, 𝒞𝑐 denotes the collection of control (ctrl) cells belonging to type 𝑐, while 𝒫𝑐,𝑝 represents perturbed
cells of type 𝑐 that received perturbation 𝑝. The cell-type-specific perturbation effect is computed as:

𝜹𝑐,𝑝 = 𝝁pert𝑐,𝑝 − 𝝁ctrl𝑐 (22)

To obtain a global perturbation effect, we average these cell-type-specific effects across all cell types
where the perturbation was applied:

𝜹𝑝 =
1

|𝒞𝑝|
∑

𝑐∈𝒞𝑝

𝜹𝑐,𝑝, where 𝒞𝑝 = {𝑐 ∣ |𝒫𝑐,𝑝| > 0} (23)

https://github.com/ArcInstitute/State-reproduce
https://github.com/ArcInstitute/State-reproduce
https://github.com/ArcInstitute/State-reproduce
https://github.com/ArcInstitute/State-reproduce
https://colab.research.google.com/drive/1Ih-KtTEsPqDQnjTh6etVv_f-gRAA86ZN
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For prediction, given a test cell of type 𝑡 and perturbation 𝑝, the model generates:

𝐱̂ = 𝝁ctrl𝑡 + 𝜹𝑝, 𝜹ctrl = 𝟎 (24)
This approach ensures that control cells are predicted without modification, while perturbed cells receive

a consistent global perturbation shift regardless of their specific cell type.

Hepg2 and CD4mean, context mean The Context Mean baseline predicts a cell’s post-perturbation
profile by returning the average perturbed expression of cells of the same cell type observed in the training
set. For every cell type 𝑐, we collect all training cells whose perturbation is not the control and form the
pseudo-bulk mean:

𝝁𝑐 =
1

|𝒯𝑐|
∑

𝑖∈𝒯𝑐

𝐱(𝑖), 𝒯𝑐 =
{
𝑖 ∣ cell_type(𝑖) = 𝑐, 𝑝(𝑖) ≠ ctrl

}
. (25)

At inference time, for a test cell 𝑖 with cell type 𝑐(𝑖) and perturbation label 𝑝(𝑖), we predict:

𝐱̂(𝑖) = {
𝐱(𝑖) if 𝑝(𝑖) = ctrl,
𝝁𝑐(𝑖) if 𝑝(𝑖) ≠ ctrl.

(26)

In other words, control cells are passed through unchanged, whereas perturbed cells inherit their cell-type
mean.

I Implementation details

In this paper, we carried out model selection for various values of hyperparameters. In the following
paragraphs, we provide further details for reproducibility.

VAE Table 7 summarizes the hyperparameter configurations used for the VAE encoder architectures in
our experiments.

Table 7. Hyperparameter values of VAE Encoders considered in this paper.

VAE Encoder

Embedding layer
Embedding size 256
Cross-Attention Block
Number of Heads {1,4,8}
No. pseudoinputs {64,128, 256}
Embedding size {128,256}
Transformer Blocks
Number of Blocks {2, 4}
Number of Heads 1
Embedding size 256
Gaussian Stochastic Layer
Latents per token {8, 16, 32}

Table 8 summarizes the hyperparameter configurations used for the VAE decoder architectures in our
experiments.
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Table 8. Hyperparameter values of VAE Decoders considered in this paper.

VAE Decoder

Transformer Blocks
Number of Blocks {2, 4}
Number of Heads {1,4,8}
Embedding size {128,256}
Normalization LayerNorm

Cross-Attention Block
Shared embedding layer True

No. pseudoinputs {64,128, 256}
Number of Heads 1
Embedding size 256

NegativeBinomial Stochastic Layer
Shared 𝜃 False

FlowMatching Table 9 summarizes the hyperparameter configurations used for the LDM architectures
in our experiments.

Table 9. Hyperparameter values of LDMs considered in this paper.

LDM – FlowMatching

Denoising Transformer
Number of Blocks 8
Number of Heads 8
Embedding size 256
Normalization LayerNorm

Adaptive Normalization True

Hyperparams
𝜎 1𝑒−4

𝑣 0
Transport linear

scLDM-VAE Census Table 10 summarizes the hyperparameter configurations used for the scLDM-VAE
Census architectures in our experiments.

Training details For training, we swept over various configurations of hyperparameters, see Table 11.
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Table 10. Hyperparameter values of scLDM-VAE Census.

Encoder-Decoder hyperparameters
Number of Blocks {8,16}
Number of Heads {8,16}
Number of Layers {8,16}

Number of Latent Tokens {256}
Embedding size {256,512,768}
Normalization LayerNorm

Table 11. Hyperparameter values of training procedures considered in this paper.

Training

KL-weight {0, 1𝑒−5}
Optimizer AdamW

Mini-batch size {64,128,256}
Learning rate {1𝑒−3, 5𝑒−4}

(𝛽1, 𝛽2) (0.9, 0.95)
Weight Decay {0, 1𝑒−7, 1𝑒−4}

Learning scheduler cosine

J Evaluation

J.1 MaximumMean Discrepancy (MMD)

We propose to use the Maximum Mean Discrepancy (MMD) [66]. MMD is a non-parametric distance
measure between probability distributions based on the notion of embedding distributions into a reproducing
kernel Hilbert space (RKHS)ℋ. Given two distributions 𝑃 and 𝑄 over a domain 𝒳, the MMD is defined as:

MMD[ℱ, 𝑃, 𝑄] = sup
𝑓∈ℱ

(
𝔼𝑥∼𝑃[𝑓(𝑥)] − 𝔼𝑦∼𝑄[𝑓(𝑦)]

)
, (27)

where ℱ is a class of functions. When ℱ is the unit ball in an RKHSℋ with kernel 𝑘, the MMD can be
expressed as:

MMD2[ℋ, 𝑃, 𝑄] = 𝔼𝑥,𝑥′∼𝑃[𝑘(𝑥, 𝑥′)] + 𝔼𝑦,𝑦′∼𝑄[𝑘(𝑦, 𝑦′)] − 2𝔼𝑥∼𝑃,𝑦∼𝑄[𝑘(𝑥, 𝑦)]. (28)

In practice, given finite samples 𝑋 = {𝑥1, … , 𝑥𝑚} drawn from 𝑃 and 𝑌 = {𝑦1, … , 𝑦𝑛} drawn from 𝑄, we
use the unbiased empirical estimate:

M̂MD
2
[𝑋, 𝑌] = 1

𝑚(𝑚 − 1)

𝑚∑

𝑖≠𝑗
𝑘(𝑥𝑖 , 𝑥𝑗) +

1
𝑛(𝑛 − 1)

𝑛∑

𝑖≠𝑗
𝑘(𝑦𝑖 , 𝑦𝑗) −

2
𝑚𝑛

𝑚∑

𝑖=1

𝑛∑

𝑗=1
𝑘(𝑥𝑖 , 𝑦𝑗). (29)

The choice of kernel 𝑘 determines the richness of the function class ℱ. Common choices include the
Gaussian RBF kernel 𝑘(𝑥, 𝑦) = exp(−‖𝑥 − 𝑦‖2∕2𝜎2) with bandwidth parameter 𝜎. The MMD is zero if and
only if 𝑃 = 𝑄 when using a characteristic kernel, making it a powerful tool for two-sample testing and
distribution matching applications.
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J.2 2-Wasserstein Distance (W2)

The 2-Wasserstein distance provides an alternative metric for comparing probability distributions based on
optimal transport theory. For distributions 𝑃 and 𝑄 on ℝ𝑑, the 2-Wasserstein distance is defined as:

𝑊2(𝑃, 𝑄) = ( inf
𝛾∈Γ(𝑃,𝑄)

∫
ℝ𝑑×ℝ𝑑

‖𝐱 − 𝐲‖2 𝑑𝛾(𝐱, 𝐲))
1∕2

, (30)

where Γ(𝑃, 𝑄) denotes the set of all joint distributions withmarginals 𝑃 and𝑄. For empirical distributions
with equal sample sizes 𝑛, given samples 𝑋 = {𝐱1, … , 𝐱𝑛} and 𝑌 = {𝐲1, … , 𝐲𝑛}, the discrete 2-Wasserstein
distance simplifies to:

𝑊2
2(𝑋, 𝑌) =

1
𝑛 min
𝜋∈Π𝑛

𝑛∑

𝑖=1
‖𝐱𝑖 − 𝐲𝜋(𝑖)‖2, (31)

where Π𝑛 is the set of all permutations of {1, … , 𝑛}. This optimization problem can be solved efficiently
using the Hungarian algorithm or entropic regularization approaches.
When both distributions are Gaussian with means 𝝁𝑃, 𝝁𝑄 and covariances 𝚺𝑃, 𝚺𝑄, the 2-Wasserstein

distance has a closed-form expression:

𝑊2
2(𝑃, 𝑄) = ‖𝝁𝑃 − 𝝁𝑄‖

2 + tr
(
𝚺𝑃 + 𝚺𝑄 − 2(𝚺1∕2𝑃 𝚺𝑄𝚺

1∕2
𝑃 )1∕2

)
, (32)

which coincides with the Frechét Distance.
Unlike MMD, the Wasserstein distance directly captures the geometry of the underlying space and

provides interpretable transport plans between distributions.

J.3 Fréchet Distance for Gene Expression Profile Evaluation

Weadapt the Fréchet InceptionDistance (FID) framework to evaluate the quality of synthetic gene expression
profiles by replacing the Inception network’s feature extraction with Principal Component Analysis (PCA).
This approach provides a computationally efficient and interpretable metric for comparing distributions of
real and synthetic gene expression data.

J.3.1 Principal Components Calculation

Let 𝒳𝑟 = {𝐱𝑟1, 𝐱
𝑟
2, … , 𝐱

𝑟
𝑛} denote the set of real gene expression profiles and 𝒳𝑠 = (𝐱𝑠1, 𝐱

𝑠
2, … , 𝐱

𝑠
𝑚} denote the

synthetic profiles, where each 𝐱𝑖 ∈ ℝ𝐷 represents the expression levels of 𝐷 genes.
We first apply PCA to the combined dataset to obtain a projection matrix𝐖 ∈ ℝ𝑘×𝐷 containing the top

𝑘 principal components (e.g., 𝑘 = 30). The feature representations are computed as:

𝐳𝑟𝑖 = 𝐖⊤𝐱𝑟𝑖 , 𝐳𝑠𝑗 = 𝐖⊤𝐱𝑠𝑗 (33)

where 𝐳𝑟𝑖 , 𝐳
𝑠
𝑗 ∈ ℝ𝑘 are the projected representations in the principal component space.

J.3.2 Fréchet Distance Calculation

Assuming the feature representations follow multivariate Gaussian distributions:
∙ Real data: 𝒩(𝜇𝑟, Σ𝑟);
∙ Synthetic data: 𝒩(𝜇𝑠, Σ𝑠).

We estimate the parameters:

𝜇𝑟 =
1
𝑛

𝑛∑

𝑖=1
𝐳𝑟𝑖 , Σ𝑟 =

1
𝑛 − 1

𝑛∑

𝑖=1
(𝐳𝑟𝑖 − 𝜇𝑟)(𝐳𝑟𝑖 − 𝜇𝑟)⊤ (34)
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𝜇𝑠 =
1
𝑚

𝑚∑

𝑗=1
𝐳𝑠𝑗 , Σ𝑠 =

1
𝑚 − 1

𝑚∑

𝑗=1
(𝐳𝑠𝑗 − 𝜇𝑠)(𝐳𝑠𝑗 − 𝜇𝑠)⊤ (35)

The Fréchet Distance between these distributions is then computed as:

FD = ||𝜇𝑟 − 𝜇𝑠||22 + Tr(Σ𝑟 + Σ𝑠 − 2(Σ𝑟Σ𝑠)1∕2) (36)

where Tr(⋅) denotes the matrix trace and (Σ𝑟Σ𝑠)1∕2 is the matrix square root of Σ𝑟Σ𝑠.

J.3.3 Interpretation

This metric captures both the difference in means (first term) and the difference in covariance structure
(second term) between real and synthetic gene expression profiles in the reduced PCA space. Lower values
indicate better agreement between the distributions, suggesting higher quality synthetic data. The use of
PCA ensures that the comparison focuses on the most significant sources of variation in the gene expression
data while reducing computational complexity from 𝑂(𝑑2) to 𝑂(𝑘2) where typically 𝑘 ≪ 𝑑.

J.4 Pearson Correlation Coefficient (PCC)

While MMD and Wasserstein distances measure distributional differences, the Pearson correlation coeffi-
cient quantifies linear relationships between paired observations. For two random variables 𝑋 and 𝑌, the
population Pearson correlation coefficient is defined as:

𝜌𝑋,𝑌 =
Cov(𝑋, 𝑌)
𝜎𝑋𝜎𝑌

=
𝔼[(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌)]√

𝔼[(𝑋 − 𝜇𝑋)2]
√
𝔼[(𝑌 − 𝜇𝑌)2]

, (37)

where 𝜇𝑋 , 𝜇𝑌 are the means and 𝜎𝑋 , 𝜎𝑌 are the standard deviations. Given paired samples {(𝑥𝑖 , 𝑦𝑖)}𝑛𝑖=1,
the sample correlation coefficient is:

𝑟 =
∑𝑛

𝑖=1(𝑥𝑖 − 𝑥̄)(𝑦𝑖 − 𝑦̄)
√∑𝑛

𝑖=1(𝑥𝑖 − 𝑥̄)2
√∑𝑛

𝑖=1(𝑦𝑖 − 𝑦̄)2
, (38)

where 𝑥̄ = 1
𝑛

∑𝑛
𝑖=1 𝑥𝑖 and 𝑦̄ =

1
𝑛

∑𝑛
𝑖=1 𝑦𝑖 . The coefficient 𝑟 ∈ [−1, 1], with |𝑟| = 1 indicating perfect linear

relationship and 𝑟 = 0 suggesting no linear correlation. For multivariate data 𝐗 ∈ ℝ𝑛×𝑑 and 𝐘 ∈ ℝ𝑛×𝑑, one
can compute the average correlation across dimensions or construct a correlation matrix. While Pearson
correlation captures only linear dependencies and is sensitive to outliers, it remains widely used due to its
computational efficiency and interpretability in assessing feature-wise relationships between datasets.

J.5 Metrics used in experiments

Reconstruction Metrics In our experiments, we use the reconstruction error for the Negative Binomial
distribution, PCC and Mean Squared Errors (MSE) as reconstruction metrics.

GenerationMetrics For evaluating generation capabilities of models, we use the MMD with the RBF
kernel, the Wasserstein Distance, and the Frechet Distance, all calculated to 30 principal components. We
compute the PCA on the true data, and project generated data using the loadings. All evaluations were run
using 3 generation seeds.
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PerturbationMetrics For evaluating perturbation prediction capabilities of models, we used the overlap
of DEG (Differentially Expressed Genes) which is related to correlation of average treatment effect ATE-
Pearson r in [6], the Spearman Correlation of Log2Fold Changes of significant DEGs, the discrimination L1
score and the Mean Absolute Error (MAE), all computed using the cell-eval [5] library. All evaluations
were run using 3 model outputs, generated for 3 different seeds. For scLDM, we simply sampled from the
same model 3 times using different seeds. For all other models, we retrained the model from scratch with
different seeds, which only impacts initialization, since the dataset split is fixed.

K Ablation on type of Classifier-Free Guidance

Classifier-Free Guidance with Multiple Conditioning Variables. In our setting, as described in
section 4.2 the diffusion model is conditioned on multiple attributes simultaneously (e.g., cell type and
perturbation). We explore two alternative strategies for applying classifier-free guidance (CFG):
(Type I: Joint conditioning). A single conditioning token is assigned to each unique combination of

attributes. The model output under this strategy is given by

𝑣𝑡,𝜖(𝐙, 𝑦) = 𝑣𝑡,𝜖(𝐙;Null) + 𝜔
[
𝑣𝑡,𝜖(𝐙; 𝑦) − 𝑣𝑡,𝜖(𝐙;Null)

]
, (39)

where 𝑦 encodes the full joint condition (e.g., “CD4 Naive + IL-9” or “HepG2 + PPP6C”).
(Type II: Additive conditioning). Instead of encoding combinations directly, we treat each conditioning

variable independently. For𝑀 attributes with labels {𝑦(𝑗)}𝑀𝑗=1, the guided output is

𝑣𝑡,𝜖
(
𝐙, {𝑦(𝑗)}𝑀𝑗=1

)
= 𝑣𝑡,𝜖(𝐙;Null) +

𝑀∑

𝑗=1
𝜔𝑗
[
𝑣𝑡,𝜖(𝐙; 𝑦(𝑗)) − 𝑣𝑡,𝜖(𝐙;Null)

]
, (40)

where each attribute contributes an additive adjustment relative to the unconditional prediction.

Empirical Comparison. We evaluate both approaches onParse 1M (conditioning on cell type + cytokine
perturbation) and Replogle (conditioning on cell type + gene knockout). As shown in Table 15, the joint
conditioning strategy (Type I) consistently outperforms the additive conditioning strategy (Type II) across
metrics, indicating that learning a single joint embedding for each combination of attributes is more effective
in capturing complex context–perturbation interactions than treating them independently.
In all experiments, we set the guidance weight 𝜔 to 1, unless specified otherwise, and we did not tune

this parameter.

L Additional Results

L.1 Experiment 1: Ablation experiments and additional results

In Table 12 we report an ablation study on encoding gene expression following our approach of zero padding
the non-expressed genes (see Appendix F.1), or utilizing the full context as input, as typically done in scVI.
Our approach is superior in terms of reconstruction performance, as well as more computationally efficient.

Table 12. Reconstruction performance comparison of our scLDM using the zero padding strategy
for encoding, or using all genes as input.

Dataset Model RE ↓ PCC ↑ MSE ↓

Dentate Gyrus full context 5458.6 0.097 0.252
zero padding 5325.3 0.125 0.242

In Figure 4, we report another ablation study on hyperparameters of the VAE architecture: we sweep
over depth (number of layers for the encoder/decoder layers), width (embedding dimensions) and number
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of latent tokens, over two datasets that consists of vastly different number of genes (18k for dentate gyrus
versus 2k for replogle) and cells (600k for replogle and 18k for dentate gyrus). Interestingly, depth appears
to negatively impact performance in the dentate gyrus dataset, whereas it does not in the Replogle dataset.
For both datasets, a larger embedding dimension as well as a higher number of latent tokens improve
performance.
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Figure 4. Ablations on VAE width, depth and number of latent tokens

In Table 13, we present the model comparison on benchmark datasets, but on all genes. Please note that
in this comparison, scDiffusion performs better than in the table on the metrics computed only on highly
variable genes. The reason for that is that the data is extremely sparse, and the model synthesizes data
consisting mostly of zeros. As a result, the match becomes better. This is a clear indication of deficiencies of
the currently used evaluation metrics for generative models, which is a long-standing issue in the field [67].
In Figure 5, 6, and 7, we present a visualization of gene-wise variance for true and generated data on

Dentate Gyrus, Tabula Muris, and HLCA, respectively. CFGen and scLDM properly recover true variance,
with a slight tendency of scLDM to overestimate, while scDiffusion completely fails and underestimates the
true Variance.

In Figure 8, we present a visualization of true and generated data for all models and all datasets in UMAP
coordinates. In Figures 9 10 11, we present the conditional generation results in UMAP coordinates colored
by the conditional class.
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Figure 5. Visualization of the gene-wise variance for true and generated data for CFGen (left),
scDiffusion (middle) our model (right), for the conditional generation settings on Dentate Gyrus.
The error bars represent the standard errors over 3 seeds.

Figure 6. Visualization of the gene-wise variance for true and generated data for CFGen (left),
scDiffusion (middle) our model (right), for the conditional generation settings on Tabula Muris. The
error bars represent the standard errors over 3 seeds.

Figure 7. Visualization of the gene-wise variance for true and generated data for CFGen (left),
scDiffusion (middle) our model (right), for the conditional generation settings on HLCA. The error
bars represent the standard errors over 3 seeds.



32

Table 13. Model performance comparison on unconditional and conditional cell generation bench-
marks on all genes. W2, MMD2 RBF and FD metrics calculated on 30 principal components are
reported (lower is better).

Setting Model W2 ↓ MMD2 RBF ↓ FD ↓
Dentate Gyrus

Uncond
scDiffusion 8.545 ± 0.061 0.021 ± 0.000 16.303 ± 0.265
CFGen 11.396 ± 0.025 0.027 ± 0.001 24.942 ± 0.456
Ours 9.489 ± 0.054 0.027 ± 0.000 28.307 ± 0.357

Cond
scDiffusion 8.906 ± 0.041 0.093 ± 0.001 28.829 ± 1.612
CFGen 10.580 ± 0.022 0.082 ± 0.001 40.298 ± 0.472
Ours 9.147 ± 0.024 0.108 ± 0.004 31.045 ± 0.884

Tabula Muris

Uncond
scDiffusion 8.616 ± 0.215 0.002 ± 0.000 6.881 ± 0.565
CFGen 11.331 ± 0.081 0.009 ± 0.000 31.788 ± 1.073
Ours 10.573 ± 0.092 0.005 ± 0.000 17.641 ± 0.337

Cond
scDiffusion 11.459 ± 0.081 0.035 ± 0.001 43.456 ± 1.678
CFGen 9.420 ± 0.041 0.026 ± 0.001 22.045 ± 0.389
Ours 8.530 ± 0.110 0.019 ± 0.001 15.547 ± 0.557

HLCA

Uncond
scDiffusion 9.234 ± 0.008 0.002 ± 0.000 5.585 ± 0.180
CFGen 12.651 ± 0.025 0.008 ± 0.000 24.038 ± 0.492
Ours 10.816 ± 0.089 0.010 ± 0.000 24.126 ± 0.473

Cond
scDiffusion 9.998 ± 0.048 0.094 ± 0.002 40.093 ± 3.103
CFGen 10.715 ± 0.039 0.087 ± 0.005 36.178 ± 0.961
Ours 9.350 ± 0.046 0.084 ± 0.005 28.398 ± 1.358

(a) scLDM - unconditional (b) CFGen - unconditional (d) scLDM - conditional (e) CFGen - conditional
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Figure 8. Visualization of the generation results for all datasets and models for conditional and
unconditional generations. True and Generated gene expression is embedded in UMAP coordinates
jointly, upon normalization, following standard Scanpy pipeline.
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(a) scLDM - conditional (b) CFGen - conditional (c) scdiffusion - conditional

Figure 9. Visualization of the conditional generation results for the dentate gyrus dataset and all
models, colored by the conditional label (clusters).

(a) scLDM - conditional (b) CFGen - conditional (c) scdiffusion - conditional

Figure 10. Visualization of the conditional generation results for the tabula muris dataset and all
models, colored by the conditional label (tissue).

L.2 Experiment 1: Interpretability results on cross-attention scores

The cross-attention encoder and decoder layers can be interpreted as pooling and unpooling operators on the
gene tokens at input and output. The attention scores of the cross attention layers provide an interpretability
tool to analyze how gene tokens map to the latent tokens. We analyzed the attention patterns of the encoder
and decoder cross-attention layers in the dentate gyrus dataset. To this end, we computed the marker genes
for each cell type annotated in the dataset. We further extracted the attention weights between the gene
tokens and the latent tokens and averaged them across 1k cells (where each celltype was sampled roughly
the same proportion with respect to the original dataset). Using the genes v. latent tokens average attention
matrix, we computed enrichment scores for the cell type markers for each latent token using decoupler [68].
We visualized the enrichment score between each latent token and cell-type marker genes in Figure 12,
where each column (latent tokens) and rows (marker genes gene set) was clustered using hierarchical
clustering. We can observe that the latent tokens do show a selective enrichment for marker genes of specific
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(a) scLDM - conditional (b) CFGen - conditional (c) scdiffusion - conditional

Figure 11. Visualization of the conditional generation results for the hlca dataset and all models,
colored by the conditional label (cell type).

cell types. In particular, the enrichment score seems to separate correctly the groups of cell types belonging
to the Neuron, Oligodendrocyte and Glia lineage, both in the encoder and decoder layer.

L.3 Experiment 2: Reconstruction capabilities on perturbation datasets

The results presented in Table 14 demonstrate that our proposed approach significantly outperforms the
scVI baseline across all evaluated metrics on the Parse1M and Replogle dataset. Most notably, our method
achieves a substantially lower reconstruction error (RE) of about 310 nats compared to scVI’s 432 nats,
indicating better reconstructive capabilities. Furthermore, our approach yields a remarkable improvement
in Pearson correlation coefficient (PCC), achieving 0.887 versus scVI’s mediocre 0.351, which suggests
that our model captures the underlying biological relationships much more effectively. The mean squared
error (MSE) is also greatly reduced from 0.701 to 0.188, representing an approximately 73% reduction in
reconstruction error. These consistent improvements across multiple evaluation criteria provide strong
evidence that our method offers substantial advantages over scVI and indicate its great potential in analyzing
biological data.

Table 14. Model performance comparison on cell reconstruction task.

Dataset Model RE ↓ PCC ↑ MSE ↓

Parse 1M scVI 432.41 ± 0.08 0.351 ± 0.000 0.701 ± 0.001
scLDM 𝟏𝟒𝟗.𝟕𝟎 ± 𝟎.𝟐𝟐 𝟎.𝟖𝟕𝟒 ± 𝟎.𝟎𝟎𝟑 𝟎.𝟏𝟔𝟓 ± 𝟎.𝟎𝟎𝟐

Replogle scVI 2144.86 ± 0.35 0.166 ± 0.000 0.703 ± 0.001
scLDM 𝟏𝟓𝟗𝟎.𝟓𝟏 ± 𝟎.𝟑𝟖 𝟎.𝟕𝟏𝟑 ± 𝟎.𝟎𝟎𝟒 𝟎.𝟐𝟖𝟓 ± 𝟎.𝟎𝟎𝟐
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Encoder

Decoder

Figure 12. Enrichment scores for marker genes of cell-types in the dataset of cross-attention for
both the cross-attention encoder and decoder layers.

L.4 Experiment 2: A comparison between additive and joint conditioning in classifier-
free guidance

Table 15 compares the performance of our scLDM model using two different classifier-free guidance
approaches for conditional cell generation: the additive steering method proposed by Palma et al. [20] and
our joint attribute steering method. Across all metrics (Wasserstein-2 distance, MMD2 RBF, and Fréchet
Distance) and both datasets (Parse 1M and Replogle), the joint approach consistently outperforms the
additive approach, demonstrating substantial improvements in generation quality.

Table 15. Model performance comparison on conditional cell generation on Parse1M and Replogle.
For these results scLDM was trained using the classifier-free guidance approach proposed in [20]
(additive) and ours (joint).

Dataset Model W2 ↓ MMD2 RBF ↓ FD ↓

Parse 1M scLDM (additive) 15.850 ± 0.073 0.129 ± 0.004 109.196 ± 2.933
scLDM (joint) 12.455 ± 0.001 0.027 ± 0.000 18.145 ± 0.068

Replogle scLDM (additive) 18.538 ± 0.058 0.451 ± 0.003 255.510 ± 2.163
scLDM (joint) 11.288 ± 0.011 0.200 ± 0.001 53.555 ± 0.210

L.5 Experiment 2: Perturbation prediction metrics

We further evaluated our models and all baselines on the generated results for the test set perturbations
using the cell-eval package 7 (Figure 13). Our model, although not explicitly designed for perturbation
prediction, is competitive across various metrics compared to the baselines on both datasets considered.

7https://github.com/ArcInstitute/cell-eval

https://github.com/ArcInstitute/cell-eval
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Figure 13. Evaluation metrics from the cell-eval package for the Parse 1M dataset (top) and
Replogle dataset (bottom)

L.6 Experiment 3

For the last experiment, we trained three VAEs for our approach (scLDM-VAE): with 20M parameters, 70M
parameters, and 270M parameters. Further, we evaluated the resulting models using embeddings on a
downstream task (classification) for two out-of-distribution datasets (COVID-19 and Tabula Sapiens 2.0).
First, we evaluated these three versions of our model using reconstruction metrics on the dataset they

were trained on, namely, Human Census Data from CellxGene8. Looking at Table 16, we can see a clear rela-
tionship between model size and reconstruction performance for the scLDM-VAE models on the CellxGene
dataset. As the number of parameters increases from 20M to 270M, all three metrics show substantial im-
provement: reconstruction error (RE) decreases, Pearson correlation coefficient (PCC) increases, and mean
squared error (MSE) drops. These results demonstrate that scaling up the scLDM-VAE architecture yields
consistent performance gains across all reconstruction metrics, with the 270M parameter model achieving
approximately 17% lower reconstruction error and 18% higher correlation compared to the smallest 20M
model.

Table 16. Reconstruction performance comparison of our scLDM-VAEs with varying number of
parameters: 20M, 70M, and 270M.

Dataset Model RE ↓ PCC ↑ MSE ↓

CellxGene Census
scLDM-VAE (20M) 1742.7 0.661 0.137
scLDM-VAE (70M) 1552.7 0.739 0.106
scLDM-VAE (270M) 1441.7 0.783 0.091

Table 17 presents a comprehensive performance comparison of various models on the COVID-19 dataset,
averaged across all donors. Our scLDMmodel with 270M parameters achieves the best performance across
all metrics (ROC AUC, PR AUC, F1 Score, Recall, and Precision), demonstrating consistent improvements
over both transformer-based baselines (TranscriptFormer, scGPT, Geneformer, UCE) and traditional VAE
approaches (scVI, AIDO.Cell).
Figure 14 visualizes the receiver operating characteristic (ROC) and precision-recall (PR) curves for

all models on the COVID-19 classification task. The curves further illustrate the superior discriminative

8https://cellxgene.cziscience.com/

https://cellxgene.cziscience.com/
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Table 17. COVID-19 Model Performance Summary (Averaged Across All Donors). Bold indicates
the best performing model.

Model ROC AUC PR AUC F1 Score Recall Precision

scLDM (270M) 0.909± 6e-04 0.877± 0.001 0.820± 0.001 0.836± 0.001 0.806± 0.001
TranscriptFormer 0.905± 4e-04 0.874± 9e-04 0.814± 0.002 0.829± 0.003 0.801± 0.001
scLDM (70M) 0.905± 5e-04 0.872 ± 0.001 0.815 ± 0.001 0.83 ± 0.002 0.801 ± 0.001
scLDM (20M) 0.902± 5e-04 0.869 ± 0.001 0.811 ± 0.001 0.827 ± 0.001 0.797 ± 0.002
UCE 0.876± 5e-04 0.834± 0.002 0.775± 8e-04 0.781± 0.001 0.771± 0.002
scGPT 0.876± 4e-04 0.831± 0.001 0.779± 9e-04 0.793± 0.002 0.766± 0.001
Geneformer 0.866± 6e-04 0.815± 0.001 0.768± 0.001 0.781± 0.003 0.757± 0.001
AIDO.Cell 0.821± 7e-04 0.753± 9e-04 0.717± 8e-04 0.729± 0.002 0.708± 0.001
scVI 0.800± 7e-04 0.709± 0.001 0.675± 0.001 0.680± 0.002 0.680± 0.001

performance of scLDM variants, with the 270M parameter model achieving the highest area under both
curves, consistent with the quantitative results in Table 17.
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Figure 14. Precision-recall and receiver operator curves for COVID-19 data.

Table 18 summarizes model performance on the Tabula Sapiens 2.0 dataset, averaged across all tissues.
Notably, the smallest scLDM variant (20M parameters) achieves the highest F1 score (0.804), slightly
outperforming both larger scLDMmodels and all baseline methods, suggesting that model scale may have
diminishing returns on this particular cell type classification task.
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Table 18. Tabula Sapiens 2.0 model performance summary (averaged across all tissues)

Model F1 Score Recall Precision

scLDM-20M 0.804 ± 0.002 0.805 ± 0.002 0.812 ± 0.002
scLDM-270M 0.802 ± 0.002 0.803 ± 0.002 0.811 ± 0.002
scLDM-70M 0.802 ± 0.002 0.802 ± 0.002 0.810 ± 0.002
scGPT 0.800 ± 0.002 0.802 ± 0.002 0.806 ± 0.002
scVI 0.799 ± 0.002 0.794 ± 0.002 0.814 ± 0.003
TranscriptFormer 0.799 ± 0.002 0.800 ± 0.002 0.802 ± 0.002
UCE 0.796 ± 0.002 0.797 ± 0.001 0.801 ± 0.003
Geneformer 0.777 ± 0.002 0.776 ± 0.002 0.786 ± 0.003
AIDO.Cell 0.724 ± 0.002 0.715 ± 0.002 0.748 ± 0.003
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